基于多尺度卷积核密集网络的心电信号分类算法的研究

来源 :华北电力大学(北京) | 被引量 : 0次 | 上传用户:btxzero
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
心电图波段识别是心脏病专家诊断心脏疾病关键步骤之一,旨在从一段给定的心电图记录中获取到与心脏状态相关的信息。近年来,基于深度卷积神经网络的心电图波段识别技术取得了显著的进展,许多有效的方法相继被提出。然而,目前大多数方法只是通过简单地堆叠残差块来增加网络深度,虽然网络模型的性能得到了提高,但不可避免的引入了大量参数,计算资源消耗巨大。本文提出了一种多尺度密集网络模型,旨在构建参数量少、泛化能力高,客观性能与计算复杂度平衡的网络模型。具体而言,本文的创新之处在于:(1)构建了并联密集块结构,促进了特征通道之间的信息流动,增强了特征的传递能力。同时考虑了特征通道之间的相互依赖性,减少了对网络传递能力的阻碍。通过结合多通道与密集连接块的优势,提升了网络的表示能力,达到了在增加网络深度的同时消减网络参数数量的目的。(2)提出了局部多尺度特征融合算法提取心电图波段多样化特征,弥补了单尺度卷积核忽略了心电图各波段形态特征差异大的缺点。进一步结合密集块的卷积模块,并联不同感受野的卷积核提取信息,提高了心电图波段信息的利用率。同时改进了逐点相加或级联操作的特征融合方式,采用拼接的方式对特征进行融合,增加了特征信息的多样化。(3)优化了心电图记录的切割方式,采用三个连续R峰切割方式以保证心电图心跳节拍片段中心率数据的完整性。消除了两个R峰切割方式中缺失部分心跳节拍信息的可能,增加了心电图片段的细节信息,提高了分类识别算法的准确度。最后,与当前最流行的网络模型相比,本文算法不仅具有良好的性能,而且计算量要比其它模型小很多,运行时间短,在资源受限的设备上具有广泛应用价值。
其他文献
据2020全球癌症统计数据显示,乳腺癌(Breast Cancer,BRCA)现已占总体癌症发病的11.7%,成为了最常见的癌症,其发病和死亡均位于女性癌症首位。随着信息技术的不断发展,医疗数据的概念也逐渐得到了广泛的应用,通过将数据挖掘技术应用于乳腺癌领域,深刻挖掘乳腺癌的预后分子机制,寻找新型治疗靶标,对乳腺癌患者的预后和生存具有重大的现实意义。首先,本文基于基因表达数据构建乳腺癌预后模型。先
随着社会的发展和智慧化时代的到来,各类智能家居设备和智能基础服务设施不断出现,智慧城市和智慧校园建设开始步入快车道。社会对生态环境的保护力度日渐加大,校园生态环境更是关乎师生员工学习和生活的重要因素。在智慧校园建设中,更要提倡将各种新技术与教育教学有机融合,充分发挥其核心教育功能。本文课题以绿色智慧校园为目标,以华北电力大学北京校区的实践创新教育为动力,结合多种技术手段,建立基于新能源与物联网的校
高光谱成像技术主要用于获得同一场景在多个窄波段下的图像数据,它能够探测目标物体的空间结构和光谱反射信息,因此被广泛应用于遥感监测、医学影像分析和食品安全等领域。由于高光谱成像系统工作在狭窄的波带上,为了保证足够的信噪比,传感器通常需要在更大的空间范围内收集光子,从而导致高光谱图像空间分辨率远低于多光谱图像。如何将高光谱图像数据与同一场景下的具有高空间分辨率的多光谱图像进行有效地融合,恢复重建得到具
电容层析成像方法(ECT)是一种重要的断层扫描成像技术,在非接触式医学诊断、多相流成像等领域具有巨大的研究价值。其具有成像速度快,设备成本低的优点。但由于其应用设备通常存在传感器极板布置少,成像系统的成像效果较差,分辨率和精度较低的问题。本文在电容层析成像的原有成像算法基础上提出一种基于图像超分辨率的重建方法,取得了一系列的研究成果:(1)数据集分别采用人体头部仿真的高采样率图像做标签数据,用低采
随着云计算、大数据和5G技术的发展,电力通信网(PCN)将不断向电力物联网的方向演进,网络将会承载更多的业务且信息传递方式日益复杂;与此同时,大量新兴的电力业务对通信服务的需求差异化也在逐步扩大,传统的电力通信网络在网络统一管理和网络资源统一调度方面有所受限,灵活性和扩展性不足以满足网络发展的需求。软件定义网络(SDN)架构下的电力通信网便应运而生,SDN架构下的电力通信网能够方便地实现网络资源调
随着能源互联网的发展,电力骨干通信网上的业务数量日益增多。由于新建光缆需要一定的时间和成本,有必要考虑在网络拓扑不变的前提下通过路由优化改善网络业务的分布情况,降低业务拒绝率,提高网络的均衡度。论文针对电力骨干通信网中的路由优化问题,研究电力骨干通信网业务特性,开展电力骨干通信网路由均衡优化研究,构建最优化模型并提出模型求解方法。首先针对路由优化负载不均衡的问题,开展电力骨干通信网负载均衡路由优化
本文基于国际电信联盟在WRC-19大会提议的5G候选频段24.25-27.5GHz(简称24GHz频段),结合我国在该频段下的相关无线电业务规划使用情况,研究分析 24GHz 毫米波通信系统(Millimeter-wave Communication System,MCS)基站与车载雷达之间存在的相互干扰情况。本文的主要工作有:第一,分析总结了24GHz毫米波通信系统的主要技术和车载雷达系统的基本
电阻切换随机存取存储器(RRAM)作为一个典型的非易失的存储设备,具有简单的结构,可扩展性,快速的开关速度,低功耗和高集成度,为下一代计算系统中的信息存储和处理提供了有前景的应用。近年来,由于钙钛矿相CsPbI3优异的电学性能,吸引了越来越多RRAM应用领域的研究者的目光。然而,CsPbI3在室温下极易从立方相转变为非钙钛矿相,其在室温下的稳定相为黄相CsPbI3(δ-CsPbI3)。由于δ-Cs
随着移动通信技术和网络服务的飞速发展,虚拟现实、增强现实、自动驾驶、远程医疗等新型智能应用快速普及。这些应用通常是计算密集型和时延敏感型,即需要庞大的计算资源对数据进行实时处理。但是承载这些应用的终端设备通常具有有限的电池容量和计算能力,无法满足这些应用的需求。移动边缘计算(Mobile Edge Computing,MEC)被认为是解决上述挑战的潜在关键技术,MEC通过在无线网络的边缘侧(如基站
由于无线通信技术的应用领域不断扩展,满足动态需求的新型天线模型应运而生。当前无线通信系统需要天线具有高数据速率和高带宽等特点,因此,一种新的多输入多输出(MIMO)天线技术开始逐步建立和应用。具有多个天线单元的MIMO天线的设计是相关科研工作的难点内容,因为天线单元的尺寸很小并且共享同一个基片,导致了天线组件之间高耦合现象的出现。为了克服这些耦合效应,需要设计出一种更绝缘、更紧凑的天线。本文设计了