基于神经网络的车牌检测与识别技术研究

来源 :电子科技大学 | 被引量 : 0次 | 上传用户:bobogu
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来,随着智能交通概念的普及,车牌检测与识别应用已经遍及我们生活的方方面面,包括小区的停车场收费系统、路口的违章监控系统、交警的移动手持警务系统等。伴随着深度学习的出现,基于神经网络的车牌检测与识别算法在识别准确率上得到了进一步的提升。与此同时,复杂多变的应用场景对算法的准确率提出了更高的要求,如何使系统稳定工作在更加复杂的环境成为了近年研究的重点。本文首先对国内外的相关工作进行了调研,从基于传统图像处理方法的车牌检测与识别,到基于神经网络的车牌检测与识别。经过调研发现,在光线复杂的环境下,尤其是光照不足的环境下,现有的车牌检测算法准确率较低。针对这一问题,现有工作主要采用图像增强的方式来解决,先将图片恢复到正常光线环境下的状态,再进行检测和识别处理。这虽然提升了检测准确率,但对硬件资源造成了额外的负担。本文针对上述问题,研究了基于深度学习的自适应车牌检测算法,即针对不同的光线场景自动切换检测网络的部分权重,使得网络在正常光和暗光场景下都能保持较高的检测准确率。同时,对识别网络进行了部分改进,使其更易移植到硬件中。接着,考虑到神经网络对算力的需求,以及车牌检测和识别系统趋于终端化特点,本论文基于上述算法研究了可配置神经网络加速硬件架构。完成了卷积,池化,偏置,网络数据处理等模块的设计与实现。并通过配置两种不同的并行模式,实现了乘法器的高效利用。在此基础上,本文对研究的算法和硬件进行了实现与实验分析,通过实验发现,本文研究的自适应车牌检测算法在暗光图片数据集中,检测准确率相比原始模型有6.2%的提升。同时本文的硬件设计在INT8精度下,和算法的平均数据误差为4.3%。并且在工作频率100MHz的情况下,达到了每秒22帧的帧率。最后,本文对所有工作进行了总结,分析了算法设计与硬件设计的不足,并对后续改进工作进行了展望。
其他文献
混沌保密光通信依靠复杂的混沌信号实现对传输消息的隐藏和加密,具有良好的加密效果,在保密通信领域中发展前景广阔。其中,外腔反馈半导体激光器凭借其结构简单的优势在混沌光通信中有着重要的应用。但是由于需要发送端和接收端拥有一样参数的激光器,才可以实现高质量的混沌同步,而在实际中,很难找到多个参数完全一致的激光器,这限制了其进一步发展。近些年来,得益于计算机算力的快速提升和新算法的提出,神经网络得到了快速
信号调制作为当下通信过程中必不可少的一环,一直对整个通信系统整体性能以及传输能力产生着极大的影响,而随着现代无线通信技术的发展,调制信号的种类和方式也在不断变多,通信环境中调制信号的区分也变得愈发困难。因而调制识别这种对未知调制信号进行调制种类判断和分类的方法,在电子侦察、电子对抗、频谱检测等多种非合作通信场景下的接收机设计中都有着极大的研究意义,影响着后续通信信号的解调以及通信参数提取的实际性能
近年来,自主移动机器人发展迅速,影响着社会生产生活的各方各面并在其中发挥着愈发重要的作用。基于视觉的同步定位与地图构建(Simultaneous Localization and Mapping,SLAM)技术是自主移动机器人的核心技术,其中的闭环检测(Loop Closure Detection,LCD)环节通过辨别移动机器人是否已访问过当前位置辅助构建全局一致的地图。然而,在实际应用中,光照、
随着智能电子产品中的印刷电路板(Printed Circuit Board,PCB)越来越趋向于小型化,且板上元件密度也越来越大,从而导致PCB布线工作也变得越来越复杂。但是当前电子设计自动化(Electronic Design Automation,EDA)工具内置的自动布线功能布线速度慢且布通率低,当前PCB布线工作仍然主要依赖于人工,从而使得在工业PCB设计过程中仍需要消耗大量的人力资源。因
卷积神经网络近年来成为了解决各类视觉任务的主流选择,包括图像分类,检测跟踪,动作及意图识别等领域。卷积神经网络由一系列卷积层层堆叠构成,而传统卷积层存在着参数量和计算量大的问题,同时网络深度和宽度的提升进一步加剧参数量和计算量的问题,使得这些网络模型往往无法顺利进行移动端部署。因此设计高效的卷积神经网络具有重大的学术及工程价值。针对以上问题,本文提出了一种高效的分组卷积单元,并提出了一种基于深度可
随着工业物联网中信息量与应用计算复杂度的增加,其中资源受限的设备越来越依赖计算卸载技术。计算卸载技术可以将物联网中轻量级设备所产生的计算需求和数据转移到具有充足计算资源的节点上。一方面可以节约轻量级设备宝贵的计算、存储以及能量资源,另一方面还可以满足应用较高的时延需求。目前计算卸载可分为两种模式,源驱动和目标驱动的计算卸载模式。当前大多数传统计算卸载决策算法都以源驱动计算卸载模式为研究对象,而在新
光纤随机激光器作为随机激光器的重要分支,相关研究人员已经揭示了其具有大范围波长可调性、窄线宽、高功率输出等特性。正是由于这些独特的优势,其已经在光纤传感、光成像、光通信等领域得到重要的应用。特别是在长距离光纤传感系统中,基于光纤随机激光的传感系统不仅具有传统光纤点式传感系统结构简单、抗电磁干扰、灵敏度高的特点,而且具有响应时间短、传感器可复用、精度不受光源波长漂移、链路温度变化影响等优势,非常适用
无线传感器网络(Wireless Sensor Network,WSN)中的移动目标跟踪算法需要保证较高的跟踪精度又不过多地消耗能量。高效的跟踪效果需要调度更多的移动传感器,然而调度移动传感器会产生大量的能耗。如何平衡跟踪精度与网络消耗之间的矛盾并设计合理的节点协同调度算法是WSN中面向目标跟踪的关键问题。本文分析了在本领域的研究背景以及研究现状,进而提出了面向移动目标跟踪的节点协同调度移动跟踪算
长期以来,大规模无线传感器网络(WSN)的能量问题都一直受到研究者的普遍关注。由于大规模分层网络架构下,无线传感器网络的各个节点通常都抛洒部署到很恶劣的环境下,无法更换电池,因此节能问题成为了关键。本文从节点能耗、能量均匀、业务服务质量和路由问题的角度出发,对目标的最大覆盖范围、Q覆盖集的问题、汇聚节点休眠的负载均衡和节能的路由算法进行了研究。在汇聚节点和传感器节点两个层面上,共同休眠带来能耗问题
为了缓解单个自动驾驶车辆的计算负担,移动边缘计算(Mobile Edge Comput-ing,MEC)作为一种可靠的计算模式被应用于车联网中,允许计算资源不足的车辆将计算量大且时延敏感的任务卸载到边缘节点的服务器上进行计算。在此背景下,为了减少任务执行的时延并提高系统资源利用率,结合移动边缘计算技术,本文研究了基于人工智能的车联网环境中的协同计算和资源分配策略。主要在两个场景下进行研究,分别是车