间歇供暖建筑停暖期通风行为对能耗和热环境影响的研究

来源 :东华大学 | 被引量 : 0次 | 上传用户:yunkan
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
由于冬季供暖政策和相关设计标准的规定,我国夏热冬冷地区的居住建筑迄今为止未布置类似中国北方地区的集中连续供暖系统。这一气候区冬季的典型气候特征为潮湿寒冷,故建筑的室内热环境质量较差。为改善较差的室内热环境,近10年来,家庭独立供暖在夏热冬冷地区已逐渐成为一种普遍的行为,并具有“人在供暖、人离停暖”的按需间歇供暖模式特征。另一方面,由于这一地区夏季炎热并存在梅雨季,故环境空气通常表现为高温高湿的特征,为尽可能地改善室内热环境,居住者亦有开窗通风的生活习惯。即使在寒冷的冬季,居住者仍习惯于在停暖期间开窗通风。显然,居住者停暖时段的通风行为会造成室外冷风的大量侵(渗)入,从而增大热量损失,进而使得再次供暖时,由建筑内围护结构和室内家具等内部蓄热体吸热产生的能耗增大。同时,内部蓄热体的降温幅度越大,会造成再次供暖开始时的内部蓄热体温度降低,使得室内平均辐射温度降低,从而导致室内热舒适性较差。另外,随着我国城市化进程的加快,城市的地面空间资源紧缺问题逐渐加剧。由于地下建筑能够提供多种功能的额外空间,因而逐渐受到人们的关注,居住建筑的半地下层也逐渐被开发利用。对于地下空间,由于墙体与周围土壤直接接触,故传热过程是一个典型的三维非稳态过程,并且墙体温度与周围土壤温度之间还存在耦合换热关系,这与地上建筑的传热过程又存在显著的不同。本文针对多层居住建筑的地上间歇供暖房间和半地下间歇供暖房间,在整个供暖季,通过量化性分析来研究停暖期居住者通风行为对供暖期间的能耗和热环境的影响,以便为中国夏热冬冷地区居住建筑的节能设计和室内热舒适性的改善提供必要的理论参考依据。为了能够快速准确地计算停暖期通风行为对地上间歇供暖房间和半地下间歇供暖房间在整个供暖季供暖期间能耗和热环境的量化影响,首先需要针对地上和半地下间歇供暖房间分别确定合适的分析方法。对于地上建筑,本文基于Laplace变换法和常数变易法,给出了一种能够快速准确计算建筑围护结构和室内空气瞬态温度的解析模型,并与实验数据进行了验证。结果表明,这一解析模型的计算结果与现场实测数据之间的误差较小,计算结果相对准确,可用于地上间歇供暖建筑的传热分析。对于地下建筑,本文采用对比验证的方法,比较和分析了四个典型的地下建筑土壤耦合传热计算模型。结果显示,对于地下建筑土壤耦合传热的计算,Energy Plus中的Ground Domain Xing模型是最适合的模型,其计算速度较快并且计算准确性较高。另外,地表的蒸发蒸腾作用是影响地下建筑土壤耦合传热计算准确性的关键因素,对地下建筑传热模型的计算准确性亦有显著的影响。对于间歇供暖建筑,供暖期间由内部蓄热体吸热造成的能耗是其区别于连续供暖建筑的主要原因,居住者停暖时段的通风行为会增大这部分能耗。本文在不同内围护结构热容量和停暖时长的情况下,针对整个供暖季,研究了地上和半地下间歇供暖房间停暖期间通风行为对供暖能耗特征的影响。结果表明,对于地上和半地下间歇供暖房间,居住者在停暖时段的通风行为均会显著增大供暖能耗,通风行为对半地下房间供暖能耗的影响相比地上房间较小。停暖期室外气温越低,停暖时长越长,停暖期换气次数和内围护结构热容量越大,则停暖期间通风行为对供暖能耗的增大作用越显著。另外,半地下间歇供暖房间的能耗构成特征与地上间歇供暖房间不同。在地上间歇供暖房间的各部分供暖能耗中,内围护结构内表面与室内空气换热所产生的能耗最大,其次为冷风渗透所产生的能耗,外窗的传热能耗和外墙的换热能耗均较小。对于半地下间歇供暖房间,亦为内围护结构换热能耗最高,但地下墙体的换热能耗显著高于冷风渗透能耗、外窗传热能耗和外墙换热能耗。为兼顾居住者的通风习惯和降低供暖能耗的需求,本文基于多元非线性回归分析法,建立了地上和半地下间歇供暖房间供暖能耗的预测模型,给出了供暖能耗与停暖期换气次数、停暖时长、室外气温和内围护结构热容量间的数学关系。在供暖能耗增加率为50%的情况下,停暖期间换气次数允许值对室外气温的敏感度与内围护结构热容量和停暖时长有关。当内围护结构热容量较小或停暖时长较短时,允许值随着停暖期间室外气温的升高而明显增大;而在内围护结构热容量较大或停暖时长较长的情况下,允许值几乎不受室外气温的影响。在间歇供暖模式下,居住建筑的室内热环境处于动态变化的过程中,由于建筑墙体的热惰性大,使得墙体温度在供暖开始后难以快速升高至舒适温度,故室内热舒适性差,这种供暖初始段内的室内环境热不舒适性是间歇供暖建筑与连续供暖建筑之间的主要区别。针对地上和半地下间歇供暖建筑,本文研究了停暖期通风行为对整个供暖季供暖期间的室内平均辐射温度和室内热舒适水平的影响。结果显示,居住者在地上和半地下间歇供暖房间停暖时段内的通风行为均会显著降低供暖期间的室内平均辐射温度和室内热舒适水平,通风行为对半地下房间室内热环境的影响相比地上房间较显著。停暖期换气次数越大,停暖时长越长,停暖期室外气温和内围护结构热容量越低,则通风行为对室内平均辐射温度和室内热舒适水平的降低作用越显著。为改善间歇供暖房间供暖初始段内较差的室内热环境状况,本文针对不同的需求提出了两种改善措施。一种是基于本文建立的间歇供暖房间供暖期间最低PMV预测模型,来平衡通风行为和室内热舒适性,为了保证舒适性,需要适当限制通风行为。停暖期通风行为影响下,供暖期间最低PMV为-0.5时所对应的停暖期换气次数对停暖期室外气温的敏感性与内围护结构热容量和停暖时长有关。另一种是采取预供暖措施,使其能同时满足居住者的通风需求和室内热舒适要求,利用预供暖措施影响下的最低PMV预测模型,可以快速、准确地优化预供暖措施,但同时也会增加供暖能耗。
其他文献
松茸是一种纯天然的珍稀名贵食用菌类,被誉为"菌中之王"。相传1945年8月广岛被原子弹袭击后,唯一存活的多细胞微生物只有松茸,目前全世界都不可人工培植。松茸是什么松茸,学名松口蘑,别名松蕈、合菌、台菌,隶属担子菌亚门、口蘑科,是松栎等树木外生的菌根真菌,
期刊
随着经济的发展及科技的快速进步,微课已经普遍运用在英语课前预习、课堂学习与课后学习中,微课的应用对高中生英语的学习有很大帮助。教师微课讲授英语知识,学生自觉地参与到英语学习中,促进英语听、说、读、写能力全面发展。基于此,高中英语教师在微课教学实践中,要结合不同学生的英语学习能力,在个性中寻求共性,利用微课进行知识讲解。
期刊
随着我国互联网技术的大力发展,改变了以往的生活环境和工作环境,各个学校为学生创建优质的教学环境。信息技术的到来使学生接受教育知识的范围越来越广泛,无论时间还是地点上都不再受一定的限制,随时随地都可以满足学习需求,促进了学生们个性化、自主化、碎片化等学习方向的全面发展。
期刊
春节回家过年是炎黄子孙心中的民俗记忆和节日共识。2021年春节由于疫情防控和国民健康安全需要,"就地过年"成为新现象。以民俗学视角分析"就地过年"所衍生的一系列社会现象及民俗变迁;传统年俗在"就地过年"背景下年俗的变化;春节的传统民俗向信息化、商业化、娱乐化等方向发展变化等。从民众视角看这种变化是在疫情背景政府号召下民众自身的文化选择,年俗变化背后隐藏的传统及现代的民众文化心理,这种移风易俗的新年
关节软骨缺损治疗是目前临床上面临的最具挑战性的问题之一,由于软骨组织无血管、无神经和无淋巴的特性,在受损之后很难自行愈合。炎症反应是影响软骨损伤进程的一个关键因素,期间产生的大量促炎症因子会引起细胞的代谢紊乱和软骨基质分解增强,最终导致软骨缺损修复的失败,因此如何有效调控炎症反应是应对软骨损伤修复的重要策略。近年来,通过组织工程方法构建具有仿生天然软骨细胞外基质(ECM)特性的生物材料支架修复受损
熔焊是重要的金属材料连接方法,广泛应用在航天结构件、汽车车身、船舶分段等产品加工中。熔焊过程呈非线性、强耦合、高动态等特点,如何通过监测熔焊过程进行闭环控制一直是工程难题。基于深度学习的计算视觉近年来被认为是熔焊状态识别及缺陷检测的重要手段,是当前学术研究的热点。然而实际工程中面临熔焊图像存在强干扰、鉴别性视觉特征难以学习以及识别模型可解释性差等挑战。针对上述问题,系统性的分析了熔焊图像的特点,提
神经组织的缺陷及损伤修复是目前临床治疗的一大难题。使用神经组织工程支架引导神经修复的方法是自体移植手术的一条有效可行的替代途径,基于电刺激(ES)对神经修复的促进作用,电活性神经组织工程支架材料在这一领域具有很好的应用潜力。再生丝素蛋白(RSF)和聚(3,4-乙烯二氧噻吩)(PEDOT)具有突出的生物相容性和导电性等特点,有望用于制备性能优良并具有独特优势的RSF/PEDOT类电活性神经组织工程支
近年来,纳米医学的发展推动了癌症诊疗的进步。在众多纳米平台中,树状大分子由于具有独特的物化性能广泛地被用作纳米载体平台装载功能性造影剂或药物,用于癌症的诊断和治疗。然而,随着研究不断深入,研究者发现单代树状大分子作为载体平台,具有不可克服的局限性,难以满足肿瘤精准诊断和高效治疗的要求。例如,低代树状大分子虽然合成简单,细胞毒性小,但是载药能力有限,基因传递效率低;高代树状大分子虽然基因传递效率高,
随着经济发展,建筑环境舒适性需求和建筑能耗之间的矛盾日益激化。在提升建筑环境舒适性的同时,如何减少建筑能耗是一个亟需待解决的问题。太阳能作为清洁能源,为减少建筑能耗提供了一个切实可行的能量来源途径。太阳辐射不仅可以通过窗户直接进入到建筑房间内部,也可以通过实体墙逐渐进入到室内。虽然实体墙吸收太阳能的效率较低,但实体墙接受太阳辐射的面积约是窗户面积的1.2~3倍,因此,通过实体墙进入房间内部的太阳能