基于相关属性差分隐私保护方法研究

来源 :安徽理工大学 | 被引量 : 0次 | 上传用户:sun54965436
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
过去的几十年里,互联网领域的高速发展改变了大众的生活方式,使用APP看新闻、线上购物、利用搜索引擎查资料逐渐成为人们日常管理工作生活中经常使用的一部分。这种日常工作和生活的网络普及程度,造就了互联网时代和塑造了一大批与我们密切相关的互联网公司。在相互竞争中,这些公司往往会为用户提供优质而免费的服务,使其获得数值巨大的用户量和数据信息资源。网络相关领域和行业中的大量有用资料,但这些海量的数据中往往会包含着大量的数值巨大的企业和用户个人隐私资料,给企业和用户的个人隐私资料带来一定程度的威胁。近年来,所有这些泄露的事件完全都是由于网站中的数据持有者在网上不当地分享数据而造成的。为了保护互联网用户的隐私安全,愈发严峻的隐私保护问题是近年来的热点问题,同时在学术界,隐私保护的方法和技术,也是关注度极高的研究对象。本文以差分隐私保护为主要研究课题,研究了针对相关属性链接攻击的差分隐私保护方法。第一部分,本文中就经典的隐私保护问题及其已有研究成果进行总结和概述,同时总结了数据发布中的差分隐私保护技术。第二部分,对差分隐私保护应用领域内的数据集相关属性一些基本原理和方法作了深入的阐述。第三部分,通过实例研究了数据集两种主要属性之间的相关性的效用及度量,研究设计出了一种针对准标识符属性与敏感属性相关联时的差分隐私保护LDAA算法,使该技术在能够确保用户的数据隐私信息安全的同时,又不会直接影响共享数据的实际可用性,达到了本次课题研究的主要目的。使用该算法对数据集进行了实验设计,成果表明:当准标识符属性与敏感值属性相关联时的一个隐私保护模型满足某些特定条件时,通过(l,α)-多样性模型,可以有效地防止链接攻击,同时也以满足简化算法的时间复杂度和大大提高数据的可用性为主要目的,使得这些数据具有良好的可用性和隐私性相结合起来达到了较好的均衡,从而在属性与所有者之间相关联时实现了对个人信息进行隐私保护时数据发布的技术。图10表3参50
其他文献
当前,由于FRP混凝土试样相较于普通混凝土具有强度高、延性大等优点,其工程应用背景十分广泛,为了更好地利用该材料来改善建筑物的使用效果,国内外研究学者对FRP管混凝土的静态力学及动态压缩性能进行了诸多试验,得到了 FRP管约束力可以明显改善混凝土性能的结论,但对于FPR管约束混凝土动态劈裂拉伸性能的研究屈指可数。本文利用SHPB装置对FRP管混凝土试样进行动态劈裂拉伸试验,研究应变率(33.0 s
随着城市设施日益完善,城市空间也越来越拥挤,建筑物的兴建所遇到的基坑工程问题也成为当今工程界研究的课题之一。本文根据基坑的受力特性设计了一种新型基坑工程围护结构:装配式预制围护桩墙。因其特殊的截面形式,抗弯刚度更大、抗弯承载力更高、自重较轻,与水泥土桩(墙)组合使用不仅可以挡土、止水还可以大大减少桩体入土的阻力和挤土效应,提高施工的便捷性。与传统围护结构形式相比具有节约造价、质量可靠、施工省时、绿
微悬臂梁传感检测技术作为一种基于光、电信号检测的新技术在生物医疗、化学、环境等诸多领域已经发挥显著的作用。本文设计了基于微悬臂梁传感器的光学微量测量系统,结合疏水性较好的聚二甲基硅氧烷薄膜进行液滴挥发过程的分析。通过光杠杆法,以传感梁的响应来表示无水乙醇液滴的挥发过程。而液滴挥发是一种较常见的现象,是挥发性有机物传播的重要途径,高精度的传感测量利于分析液滴变化过程。本文首先阐述了微悬臂梁响应原理和
锚固体作为锚杆支护的核心结构,其具有较高的承载能力,对巷道围岩的变形具有一定的适应性,其对于隧道、煤矿等地下工程结构支护具有重要作用。在现场实际中,预应力锚杆受到爆破、采动等工作引起的动载作用,预应力锚固体承受典型的静动载耦合作用,导致锚固体破坏特性更为复杂。为了揭示动静载耦合作用下锚固体中破坏特征及动载应力波的影响规律。本文采用理论分析、冲击试验和数值模拟等研究方法,针对预应力锚固体,开展不同预
目标检测是一项计算机视觉领域的具有挑战性的研究工作,在3D物体检测、实例分割和智能视频监控等方面都有着重要应用。然而,在实际检测场景存在着大量前景背景相似或者带有遮挡小目标的情况,当对这些场景进行检测时存在检测精度不高的问题,这些问题在在检测目标的大小、形状不同,目标数量和目标位置不定的情况下体现的更为突出。为了增强基于深度学习的目标检测算法在检测带遮挡或者低分辨率小目标时的性能,本文对Faste
随着信息化、智能化社会的高速发展中,业务流程管理的作用越来越突出,一个性能优越的业务流程模型可显著提高公司系统的工作效率,增加其核心竞争力。而流程挖掘作为业务流程管理中的一种主要的技术手段,其中包括流程的设计与实施、模型的建立与优化,如何高效的利用流程挖掘技术进行日志数据建模和配置优化具有重大的研究意义。在实际挖掘流程模型的过程中,事件日志与挖掘到的模型存在一定的偏差或异常,过程挖掘技术需要对可执
煤矸石在颜色和形态上和煤炭相似,热值较低,在燃烧过程中容易产生有害气体污染环境,因此将矸石从煤炭中拣选出来是采煤工业中必不可少的一环。传统的煤矸石拣选方法不仅需要消耗大量财力物力,而且煤矸石的识别准确率较低。目前深度学习已经在多个领域取得了不错的成果,并逐渐被应用于煤矸石图像识别中。采用深度学习算法对图像进行识别主要依赖于大量的图像数据集,通过模型训练,自动提取煤矸石图像特征,对图像进行分类。因此
DNA自组装已成为构建纳米结构的有力工具,并被广泛应用于构建各种二维和三维物体。在众多的自组装策略中,DNA折纸术因其优异的空间可寻址性在分子工程领域表现出极大的应用潜力。与基于溶液的模型相比,基于折纸基底的模型具有反应速度快,模块化程度高等优势。本文基于折纸基底设计了四种DNA计算模型,主要研究内容如下,第一,介绍了 DNA计算的研究现状和意义。分析了当前DNA计算所具备的优势。介绍了 DNA的
路径规划、目标检测和行为识别等人工智能技术是当今智慧消防的重要研究内容。传统的路径规划、目标检测和行为识别技术已成功应用于各个领域中,然而将上述传统技术应用于消防场景时主要存在以下缺陷:由于建筑结构日渐复杂,传统路径规划用于火灾救援指导时,无法适应复杂的消防场景且无法实时掌握火灾详情;传统目标检测和行为识别技术只关注于人或物体本身而无法获取人与物之间的关联信息,难以预警因人为原因造成火灾发生的问题
神经网络是基于人对大脑组织与思维机制的感知,通过网络变换和动力学行为得到的一种并行分布式信息处理功能的数学模型,类似于大脑神经突触的连接结构。它是广泛存在于各个学科的一门技术。许多科研工作者研究发现,在实际的神经网络中,神经元之间的信息传递方式不连续,神经递质的传递可能会有延迟现象。因此,研究时滞不连续神经网络具有一定的实际意义。本文从同步动力学的角度出发,首先基于具有不连续激励函数的神经网络模型