电化学活化的钒酸铵正极材料储锌性能及机制研究

来源 :武汉理工大学 | 被引量 : 0次 | 上传用户:liongliong418
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着人类社会的不断发展与进步,对于能源供给的需求急剧增加。在发展过程中,能源供给的大幅度增加和环境污染的日益严重已成为亟需解决的两大问题。为解决这一问题,开发并利用风能、汐能、核能等新型清洁能源至关重要,同时提升能量储存设备的存储效率也有助于解决能源存储和环境问题。作为一种先进的储能设备,锂离子电池因其具有高的能量密度被广泛应用于生活中的各个领域。然而,锂离子电池面临着锂资源短缺、成本高昂、环境污染和安全性等问题。目前科学家开始研究一些更为安全且成本低廉的新型二次离子电池,以期部分替代锂离子电池的使用。水系锌离子电池具有低成本、高安全、环境友好等优势,非常适合应用于未来大规模储能领域,近年来也成为了一个热门的研究方向。水系锌离子电池因采用化学性质稳定的锌片作为负极,可在空气中完成电池组装,大幅度提高了电池生产效率。此外,所用的水系电解液对环境友善,具备高的离子电导率,可以实现快速充放电。本工作构筑了一种微米花形貌的(NH4)2V4O9正极材料。利用电化学活化的方式有效改善了电极材料性能,并探究了电化学活化提升电池性能的内在原因。主要研究内容与结果如下:(1)通过多种结构表征手段系统地研究了材料合成材料的微观结构。(2)采用电化学活化手段,改善了(NH4)2V4O9正极材料的电化学性能。并通过多种表征结构表征和电化学分析手段探究了该活化过程的结构相变和活化作用机理。(3)分别对活化前和活化后的(NH4)2V4O9正极材料反应机理进行了细致研究,揭示了电极材料活化大幅度提升电池电化学性能的内在机理。通过多种表征手段揭示了活化后材料的反应机制。
其他文献
随着工业发展和社会进步,日益严重的能源短缺问题已经成为亟待解决的重大问题。能源发展的核心是催化技术,而催化技术的核心是催化剂,因此开发高效新型催化剂材料是实现能源可持续发展的关键。负载型贵金属催化剂是催化剂材料的重要一员,其中Pd基催化剂因其高催化性能和高化学稳定性等优点,已经成为应用最为广泛的负载型贵金属催化剂。载体材料直接决定了催化剂的催化性能。多孔载体材料是使用最为广泛的一类载体,但工业上常
学位
随着我国工业化的发展,雨水中含有的污染物质数量渐增,如果这些雨水直接渗入到地下,势必会对地下水资源造成严重污染。而透水混凝土作为“海绵城市”建设的关键材料,因其具有特殊的连通孔结构和巨大的比表面积,存在净化雨水的潜质。但透水混凝土存在净水、透水与力学性能难以协调的问题,限制了净水功能型透水混凝土的设计与应用。基于此,论文构建了净水功能型透水混凝土结构模型,并分析出影响透水混凝土力学性能、透水性能和
学位
清洁氢能源的广泛使用产生了巨大的氢气需求,在众多制氢方法中电催化制氢由于其原料存量丰富,制氢过程无污染等优点得到了广泛研究。然而铂等高催化活性贵金属因其高成本,低储量限制了其大规模的应用。因此要利用有效的手段进行改性提升非贵金属催化剂的活性,现有的改性催化剂的手段主要有:通过不同催化剂材料间的复合协同提升催化剂的析氢性能;控制催化剂的形貌暴露活性位点。但以上方法都没有改善催化剂的本征活性,而缺陷工
学位
社会经济的快速发展和城市化进程加快带来了环境污染、资源短缺、温室效应等严峻问题,人们逐渐认识到发展可持续清洁能源的重要性。碱性阴离子交换膜燃料电池(AEMFC)具有环保高效、O2还原反应速度快、可使用非贵金属催化剂、成本低等优点,受到广泛关注。然而,作为AEMFC“心脏”部件的阴离子交换膜(AEM)仍然存在离子电导率低、化学稳定性差等明显缺陷,阻碍了AEMFC的商业化应用。本文从分子结构设计出发,
学位
人胰岛淀粉样多肽(Human islet amyloid polypeptide,hIAPP)发生错误折叠与纤维化沉积在胰岛β细胞表面会诱发氧化应激、炎症等一系列生理反应,加剧II型糖尿病并引发其它疾病。研究发现hIAPP的异常折叠及纤维化与体内多尺度界面(膜结构)密切相关,前期已有大量研究揭示平坦界面上的亲疏水性、电荷、手性等物理化学因素影响蛋白纤维化的规律及相关机制。然而生物体内的膜结构大多是
学位
目前,人们主要依赖空调系统来满足在建筑、汽车、数据中心、冷库等各方面的冷却需求,但是系统运行所需的制冷剂和电力严重加剧了能源消耗和全球变暖。被动辐射降温技术因其“零能耗、零污染”的特点被认为是一种极具潜力的绿色冷却手段,它的工作原理是利用地球大气窗口将物体自身的热量以红外线的形式送往深空宇宙来实现自发冷却。然而,目前的被动辐射降温材料无法根据天气条件自调节辐射降温能力,在冬季或寒冷地区无法使用,因
学位
循环流化床灰渣(简称CFB灰渣)是指在流化床锅炉内经850~900℃燃烧固硫后排出的废弃物。与普通粉煤灰(PFA)相比,CFB灰渣的结构疏松多孔,且含有大量的f-Ca O和Ⅱ-Ca SO4,具有一定的膨胀性和自胶凝性能。然而利用CFB灰渣的多孔结构、膨胀性等特性,能够有效改善干粉砂浆的保水和收缩性能。目前,CFB灰渣的利用率较低,随意堆放不仅占用大量土地资源,而且渗出液会污染水源和土壤。因此,迫切
学位
二氧化碳(CO2)是自然界中的一类常见气体,是连接有机生命体与无机环境的纽带。同时,CO2也是一种温室气体,近年来工业发展所带来的大规模CO2排放已经导致了严重的环境与气候问题。但是从合成化学角度来讲,CO2是一种无毒无害且储量丰富的优质碳源,利用CO2合成一系列具有高附加价值的精细化学品是一条绿色、可持续的发展路线,因此具有重大的研究价值。然而,由于自身的对称结构以及共轭π键的存在,CO2具有反
学位
钢铁行业作为我国的基础产业,每年产生大量的高炉渣,其中大部分高炉渣被堆弃,剩下部分被用于水泥、路基骨料等低附加值产品,没有很好的发挥出高炉渣的潜在价值。高炉渣的组成稳定,且与Ca O-Mg O-Al2O3-Si O2(CMAS)系微晶玻璃的组成相似,是制备微晶玻璃的优秀原材料,这对高炉渣的回收与利用提供了新的途径,在一定程度上解决高炉渣的堆放和污染问题,还能有效的提高高炉渣产品的附加值。结合工业生
学位
传统的支架材料在皮肤修复方面已经取得了突破性的进展,组织工程皮肤修复材料日益实现商业化。但是真皮层中的毛囊等附属器官的再生仍然没有成熟的理论作为支撑,大多数的材料还处于探索阶段。本课题采用毛乳头细胞(dermal papilla cells,DPCs)作为种子细胞与生物相容性良好的复合支架建立组织工程皮肤修复材料,探究对毛囊结构再生的影响。利用单细胞系和简单的材料体系为毛囊再生提供新的解决方案,丰
学位