烯烃的膦酰化-酰基化反应、铁催化酰胺键的构建和醛腙的膦酰化反应研究

来源 :苏州大学 | 被引量 : 0次 | 上传用户:zxhllgl1314
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
有机膦化合物具有独特的化学、生物和物理性质,因此它们在农药、医药、阻燃材料、荧光材料、金属配体等领域具有广泛的应用。磷自由基参与不饱和键的反应是构建碳-磷键的主要方法之一。本文围绕如何有效构建碳-磷键和碳-氮键进行了三方面的工作:1、研究了烯烃的膦酰化-酰基化反应。2、研究了铁催化的酰肼与胺的酰胺化反应。3、研究了二烷基亚膦酸酯参与的醛腙膦酰化反应。1、烯烃的膦酰化-酰基化反应研究本研究探索了烯烃和芳基甲酰基二芳基氧膦的反应。经过系统筛选:光照下,以乙二醇二甲醚溴化镍为催化剂,4,4’-二叔丁基-2,2’-联吡啶为配体,锌单质为还原剂,可以实现烯烃的膦酰化-酰基化。研究结果表明,不同种类的烯烃都有很好的适用性,如:β-酯基末端烯烃、芳基烷基末端烯烃、烷基末端烯烃、非末端烯烃、环烯烃、α-杂原子取代烯烃和芳基乙烯。研究中得到的目标产物结构经核磁共振和高分辨质谱分析得到了表征。在此基础上对机理进行了初步的探索,为反应提出了合理的机理。该方法为首次报道,反应中可将芳基甲酰基二芳基氧化膦均裂生成的磷自由基和酰基自由基先后引入烯烃的双键上,该反应符合原子经济性理念。2、铁催化酰肼与胺的酰胺化反应研究本研究探索了酰肼与胺的酰胺化反应。研究表明,大多数酰肼与胺均适用于反应,建立了铁盐催化构建碳-氮键的方法,为酰胺的合成提供了一种途径。3、二烷基亚磷酸酯参与的醛腙的膦酰化反应研究本研究探索了二烷基亚磷酸酯与醛腙的反应。经过系统筛选:以硝酸银为催化剂,醋酸锰为氧化剂,碳酸氢钾为碱,可实现醛腙C(sp2)-H键的膦酰化。研究结果表明,大多数醛腙衍生物和二烷基亚磷酸酯均适用于该反应。研究中得到的目标产物结构经核磁共振和高分辨质谱分析得到了表征。在此基础上对机理进行了初步的探索,为反应提出了合理的机理。该方法为首次报道,为膦酸酯基腙的合成提供了一种高效的新方法。
其他文献
小肠的传质和吸收功能对人体健康至关重要。肠内壁具有多尺度结构,环形褶皱、绒毛以及微绒毛的存在极大地增加了小肠内的吸收面积。这些特殊结构是否具有其他功能,还未有定论。根据传递理论,营养物质在肠道内的运输需要克服传质阻力,随后才能到达肠道壁面,进而被吸收。在壁面运动下,肠道壁面结构对营养物质运输的影响有待探索。此工作通过建立多物理场耦合模型,模拟以褶皱为显著特征的人体十二指肠腔体内物质的混合过程,并与
学位
柔性致动器是在外界刺激下可产生形变并且实现应力输出或能量收集的单组分材料或器件。根据形变机理的不同,可以将其分为两大类:第一类是分子链有序性/取向度变化(如含有光响应基团的聚合物,在光刺激下发生顺-反异构变化)引起的形变;第二类是由物质传输引起的体积变化(如离子或水分子的吸附/脱附)引起的形变。根据刺激源的不同,柔性致动器可以分为光、电、热、磁、溶剂、湿气、压力刺激响应型等。在众多致动器中,对湿气
学位
胆甾型液晶在液晶显示器、反射型偏振片、彩色滤光片和手性聚合物薄膜等方面有着广泛的应用,往向列相液晶中加入手性添加剂则是获得理想胆甾型液晶的有效方法。异山梨醇由于自身的手性和固有的刚性结构,可用作手性添加剂的手性基元。因此,本工作中合成了二十一种以异山梨醇为手性基元的添加剂,并展开以下研究:(1)设计合成了十八个以异山梨醇为手性基元的添加剂。通过对其结构的调整,包括引入单个不同位置的氟原子、改变末端
学位
亚硝酸叔丁酯(TBN)作为一种高效绿色的多官能化试剂可以广泛地参与到各类有机转化之中,比如氧化反应、重氮化反应、亚硝化反应、硝化反应、肟化反应等。虽然它在有机合成中已经得到了广泛的应用,但仍有很大的发展潜力。本论文研究了TBN参与下的新型反应,包括:TBN催化羧酸的绿色酯化反应、一锅法实现TBN参与的分子内[2+2+1]环加成构建异噁唑啉。简述如下:一、TBN催化羧酸的绿色酯化反应以TBN为催化剂
学位
活性胶体是一类可以将环境中各种形式的能量例如光能、化学能、磁能等转化为自身动能,从而实现自驱运动的微纳颗粒。由于活性胶体的运动和相互作用与自然界中的细胞和细菌相似,因而被认为是一类新型的仿生智能材料而备受关注。近年来,活性胶体更是在生物化学传感、药物可控释放和环境治理等实际应用领域崭露头角。科研人员在活性胶体结构设计、合成制备和运动控制等方面也取得了一定成果。然而,如何通过结构设计和外场精准地调控
学位
材料的蓬勃发展带动了各式各样传感器的研发,其成果在食品安全、生态环境以及医学诊断等方面有广阔的应用。材料的选择对传感器的性能有较大影响,通过物理、化学等方法处理之后的材料能够提高原材料的某些性能,因此功能材料引起了国内外科研人员的兴趣。钒酸铋作为一种无机光电材料,具有合适的禁带宽度、良好的可见光响应性、光催化活性和生物相容性等优势。本论文基于功能化的钒酸铋开发了如下两种传感器:1.基于钒酸铋的光电
学位
高分子的序列是指单体单元在高分子链中通过共价键连接的次序。DNA等生物大分子具有精密的一级序列结构,从而能够实现复杂且精确的功能。受到自然界大分子精确序列结构的启发,高分子序列调控成为高分子化学的热点研究领域之一。高分子序列调控一般可以分为两个层次,第一个层次是序列可控高分子,单体单元的连接次序有规律,每条高分子链中单体连接次序大体一致,但不完全相同,一般通过“活性”/可控聚合和活性缩聚等方法得到
学位
快速的城市化进程带动了经济发展,同时也造成了城市绿地空间结构和布局的巨大改变。城市内部原有生态栖息地破碎化程度不断加剧,阻碍了生物觅食、繁衍和迁徙的路线,最终导致物种数量和种类的下降,进而影响生态系统服务效益。目前,虽然生态破碎化问题已得到国内外大量关注,但大多数研究是以评估城市景观连通性的演变过程为研究目标,未能提出解决城市景观破碎化问题的有效途径。在此背景下,本文在耦合景观基础设施与景观连通性
学位
细菌黏附于各类材料表面所引起的细菌感染、污染等问题严重影响了人类身体健康,甚至对社会公共卫生系统也会造一定的威胁。构建具有抗菌性能的材料表面,对于保障社会公共健康安全具有重要的现实意义。聚N-异丙基丙烯酰胺(PNIPAM)作为一种典型的温敏性“智能”聚合物,在医疗器械、生物医药等领域受到学者的广泛关注。特别在抗菌领域,链状的PNIPAM分子常被修饰于材料表面,用作可功能切换的抗菌聚合物屏障。然而P
学位
近些年来,将含量丰富的小分子(O2、CO2等)通过电催化和热催化等方法转化为价值更高的化学品(H2O2、CO等)引起了科研人员的广泛研究。然而,由于小分子的固有特性,破坏其稳定结构实现高效转化较为艰难,此外副反应的存在也会导致目标产物选择性的降低。实现高效和高选择性的小分子转化存在较大挑战。钯(Pd)基纳米材料因其独特的物理和化学特性,在小分子的电催化转化和热催化转化领域受到广泛研究,然而其催化活
学位