基于内容的三维模型检索关键技术研究

来源 :天津大学 | 被引量 : 0次 | 上传用户:caoyongtao1985
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来,随着三维模型建模技术的发展以及低成本采集设备的出现,三维模型数据规模日益庞大,已经成为文本、图像、视频、音频以外的一种新模态大数据。由于三维模型能够更加真实的表征自然界中物体的空间结构特性和外观特性,三维模型已被广泛的应用于智能制造、数字娱乐和虚拟现实等领域。面对指数级增长的三维模型大数据,如何实现便捷的三维模型获取和管理已成为亟待解决的难题。因此,基于内容的三维模型检索关键技术成为了当前计算机视觉和人工智能等相关领域的研究热点。
  本论文在对该领域研究现状进行深入调研和分析的基础上,以三维模型的多视图以及多模态数据为研究对象,对三维模型鲁棒的特征学习以及准确的相似性度量问题展开了深入研究。本文的具体研究工作和创新点总结如下:
  1.针对多视图视觉特征鲁棒性差的问题,提出了基于多视图内部排序信息和基于多视图间相关性信息的特征学习方法。基于多视图内部排序信息的特征学习方法采用排序支持向量机来挖掘三维模型多视图在特征空间中的排序信息,从而得到三维模型多视图的统一表征;基于多视图间相关性信息的特征学习方法采用三维模型之间的相关性来引导特征学习,通过度量学习中的映射矩阵提升模型特征的鲁棒性。在通用数据库上的实验表明,所提方法在各个评测指标上的检索精度优于现有经典方法1.2%-6.9%,检索速度提升了约15倍。
  2.针对多视图视觉特征相似性度量困难的问题,提出了基于层级化图结构的相似性度量方法。所提方法将多视图相似性度量中的多对多图匹配问题转化为融合各视角下单视图相似性度量问题,避免了多对多图匹配中局部子图结构挖掘以及匹配困难的问题。此外,本文提出了基于节点上下文信息以及基于模型上下文信息的单视图相似性度量方法,增强了单视图相似性度量。最后通过融合多个单视图的相似性得到三维模型多视图间的相似度。在通用数据库上的实验表明,所提方法在各个评测指标上的检索精度优于现有经典方法2.6%-6.0%。
  3.针对多模态数据分布差异显著的问题,提出了基于多模态的三维模型检索方法。所提方法通过采用相应的图匹配方法度量了三维模型多视图间的外观视觉相似性和点云间的空间结构相似性。最后通过融合策略实现多模融合的三维模型检索。在通用数据库上的实验表明,所提方法在各个评测指标上的检索精度优于现有经典方法1.9%-13.3%,适合可以获得多种模态信息的三维模型检索场景。
  此外,针对实际应用中单视图与数据库中三维模型多视图间的视觉特征分布差异显著的问题,本文构建了基于单视图的三维模型检索数据库,并在三维模型检索国际著名评测SHREC2019-3DShapeRetrievalContest上举办了基于单视图的三维模型检索国际评测,推动了该任务的研究。
其他文献
在当今的信息化时代,随着人类对高质量图像和视频的主观需求越来越强烈,图像和视频处理技术越来越广泛地应用在各个领域。图像复原技术是指在现有硬件条件下,从软件层面对退化图像和视频进行处理,使其尽可能地复原出目标场景的细节信息以提升图像和视频质量。近年来,深度学习由于具有强大的自学能力,可以端到端地学习不同质量空间的特征映射,为图像复原领域带来了全新的发展理念。  在图像复原任务方面,现有的深度卷积神经
学位
目标检测与角度估计技术是数字图像处理研究的热门之一,伴随着深度学习框架的逐渐成熟,目标检测与角度估计技术在学术界掀起了一股新的热潮。此类技术被广泛应用于诸多场景中,然而在应对不同场景需求时,目标检测与角度估计技术经常遇到信息观测维度的问题:在某些有限的信息观测维度下观测,目标之间或目标与背景之间差异较小,进而导致分辨效果较差。因此为提升目标检测与角度估计效果,需要结合场景特点,在场景内寻找最有效的
学位
傅里叶变换红外光谱(Fourier transform infrared spectroscopy,FTIR)显微成像是一种同时涵盖精细光谱信息和空间信息的微区分析技术,具有上百个光谱波段的探测能力,光谱分辨率可达到λ/Δλ=100个数量级的光谱立体图像,最近一些文献中也称FTIR显微成像为FTIR高光谱显微成像。依据化学计量学定性剖析光谱信息时关注光谱维度,是因为FTIR显微成像数据具有丰富的特
水声通信技术作为智慧海洋工程中的一项重要技术,经历了近半个世纪的发展。针对水声通信网络层技术的研究层出不穷,大大提升了水声通信系统的可靠性和有效性。随着水声通信技术的发展,水下节点间无线组网通信受到了广泛关注,使水声传感器网络(Underwater acoustic sensor network,UASN)的工程化成为可能。在UASN中,端到端可靠传输一直是该领域备受关注的研究热点之一。论文以国家
无线通信网络正处于一个机遇与挑战并存的深度变革期。为了满足呈指数级增长的用户业务需求,无线通信网络的布设结构正逐渐向密集化和不规则化演进。与此同时,为了提高日益紧缺的可用频谱资源的使用效率,无线通信网络中的多址接入技术由正交模式向非正交模式转变。面对标新立异的通信技术,亟需充分挖掘网络参数与网络性能之间的内在联系,探究网络性能随网络参数的变化规律,并以此为理论依据进一步指导优化网络设计。然而,在形
近年来,随着多媒体技术的发展,立体图像受到越来越多的关注,而立体图像在采集、压缩、传输、显示等过程中均会产生降质问题,立体图像的质量会直接影响人们的观看体验,因此,亟需一种有效的评价方法对立体图像质量进行评估,好的评估方法还可以刻画与之相关的各种图像处理技术的优劣,并据此加以改进。  深度学习,尤其是卷积神经网络在最近几年得到了快速发展,在图像分类和物体检测等领域中都得到了很好的应用。卷积神经网络
随着计算机网络和移动端通信设备的长足发展,社交网络作为人们相互沟通的一大载体,在人们日常生活中占有着至关重要的部分。社交网络的数据载体很丰富,无论是文字、图片以及视频都可以作为其传播的载体。越来越多的人倾向于从不同的社交网络来获取一个事物的评价,比如从团购应用的评论来获取对一个店面的评论,从视频中对产品的评测获取产品的信息等。所以对多模态的数据的处理,并且从多模态数据中获取情感标签中获取有用的信息
面部表情识别是计算机视觉领域的经典问题,它在人机交互、辅助驾驶、远程教育、医疗诊断等领域存在广泛的应用。随着卷积神经网络以及深度学习技术的发展,基于深度学习的面部表情识别取得了比传统方法更加出色的性能,但是依然存在着一些棘手的问题:  第一,小规模的面部表情数据集在卷积神经网络中容易产生过拟合。第二,面部表情特征与身份特征等其他非表情因素混合在一起,导致较大的类内差异,一些表情难以区分。第三,面部
学位
目标检测任务是图像视觉领域一项具有重大挑战性的研究课题。它要求计算机在一幅含有多目标物体的图像中,对感兴趣的物体进行分类,并且通过边界框标注出每个物体的具体位置。在实际应用中,目标检测在智能监控、空间遥感及医疗辅助诊断等方面具有非常重要的研究意义与价值。随着GPU计算性能的不断优化以及人工神经网络的深入研究,基于深度学习的目标检测算法在通用目标检测任务上取得了较为瞩目的成就,但对小目标物体的识别精
学位
图像修复的目的是对破损图像或部分物体移除后的图像进行修复,以保持图像的完整视觉效果。作为图像处理领域中的研究热点,图像修复技术在老照片修复、目标物体移除、特效制作等方面都具有重要的研究价值。  论文首先阐述了图像修复的背景和研究意义;概述了图像修复的过程,简要介绍了近年来比较流行的图像修复算法,重点讨论了两种大区域图像修复算法,并对这两种算法当前所面临的主要问题做了分析。  其次,论文对基于马尔可
学位