论文部分内容阅读
自上世纪八十年代美国柯达公司的邓青云首创有机双层异质结器件以来,有机小分子光电子器件,如有机薄膜太阳能电池(Organic Solar Cells, OSCs)、有机电致发光器件(Organic Light-Emitting Diodes, OLEDs)、有机薄膜晶体管(Organic Thin Film Transistor, OTFT)及有机激光器(Organic Laser),因具有广泛的应用前景受到科研院校和产业界的广泛关注。目前由于器件的效率低、工作机理不完善等问题,制约了有机光电子器件的迅猛发展。因此,本文采用激子限域的方法来实现提高器件效率的目标,具体的研究内容如下:1.采用2-(4-biphenylyl)-5-phenyl-1, 3, 4-oxadiazole(PBD)作为激子阻挡层制备了OSCs器件,考察了PBD激子阻挡层对器件吸收光谱的影响和不同PBD激子阻挡层厚度对器件性能的影响,得出了PBD激子阻挡层厚度为5 nm时器件效率最优。由于加入激子阻挡层后,器件中激子向阴极的扩散得到了抑制。因此,激子在给体受体界面的分离概率增加,有效分离的激子数量增加,从而使器件效率得到提高。2.采用mCP ( N, N’-dicarbazolyl-3, 5-benzene)掺杂(t-bt)2Ir(acac) [bis[2-(4-tertbutylphenyl)benzothiazolato-N,C2,] iridium (acetylacetonate)]制备了器件结构为ITO/NPB (40 nm)/mCP:(t-bt)2Ir(acac) (8%, d nm)/mCP (30-d nm)/TPBi (30 nm)/Mg:Ag (200 nm)的器件,其中d= 5, 10, 15, 20, 25, 30 nm。通过对器件的电致发光光谱(Electroluminescence, EL)分析发现,器件两个发光峰分别来自于mCP和(t-bt)2Ir(acac)的发光峰。对两个发光峰强度随器件掺杂层厚度变化的趋势的分析结果表明,当器件掺杂层厚度为15 nm时,器件的两个发光峰强度出现了明显的突变,这是因为当d= 15 nm时,更多的来自于非掺杂层mCP三线态激子扩散进入掺杂层,导致了mCP和(t-bt)2Ir(acac)发光强度的突变。利用传统的稳态激子扩散方程对器件的分析,得到了mCP的三线态激子扩散长度为16±1nm。3.分别以蓝色磷光染料bis[(4,6-diflourophenyl)-pyridinato-N,C2’)](picolinato) Iridium(Ⅲ) (FIrpic)和黄色磷光染料(t-bt)2Ir(acac)为超薄层发光层,以mCP作为间隔层制备了白光器件,考察了双磷光超薄层对器件性能的影响。器件得到了稳定的白光发射,电流效率11.08 cd/A,能量效率6.21 lm/W,器件的CIE坐标一致在最优白光区域中,并且偏移较少。结果表明,超薄层对器件中激子的限制作用明显,从而导致了器件的白光发射非常稳定。综上所述,本论文研究了激子限域效应对有机光电器件性能的影响,得到了性能优化的有机薄膜太阳能电池和白光稳定的有机电致发光器件,提出一种新型分析有机材料激子扩散长度的方法,即在不改变发光层厚度的前提下,改变器件的掺杂层厚度,通过对器件电致发光光谱中不同发光峰强度变化趋势的分析,可以得出激子扩散长度。通过对激子限域作用分析结果表明,激子阻挡层和磷光超薄层可以有效地起到激子限域的作用,从而提高有机光电子器件的性能。