空气氧化制异辛酸反应的溶剂效应和Pd基催化剂研究

来源 :天津大学 | 被引量 : 0次 | 上传用户:dsa3635468456645
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
异辛酸是高端涂料、油墨以及增塑剂产业中的重要中间体,具有绿色环保、用途广泛的特点。异辛酸主要通过丁醛缩合氧化或异辛醇氧化制得。传统工艺使用高价金属氧化物为氧化剂、反应条件苛刻、环境污染重且耗能高。开发醛基化合物空气氧化新工艺和高效的金属催化剂可以替代传统工艺,解决上述技术难题。本文通过引入不同溶剂环境并结合高斯计算对异辛醛自氧化反应体系中的溶剂效应进行了探究。在不同类型的有机溶剂中产物分布差异明显,非质子溶剂有利于反应的快速发生,质子溶剂有助于产物选择性的提高,但是大量溶剂分子的存在会将反应物保护起来,使得氧化反应存在限度。异丙醇为最佳一元溶剂,异辛酸收率达到89%。通过溶剂浓度动态调控的方式打破分子间作用力,在65°C缓慢蒸发溶剂,可获得96%的产物收率。结合高斯计算对溶剂效应进行分析,分子结构优化表明,分子间作用力可以改变分子的微观结构,影响分子能量,进而改变化学反应速率。频率分析以及参数方程说明,溶剂的亲电性和极性是νcal(C=O)变化的主要因素。缔合分子模型与隐式溶剂模型契合度良好,确定了醇溶剂与醛分子之间形成氢键,再结合溶剂化能以及参数相关性分析证实了氢键的形成与反应物的转化率成负相关,与产物的选择性成正相关。在此基础上,制备了Pd负载量为1wt.%的Pd/SBA-15、Pd/Al2O3和Pd/Ce O2催化剂,并考察了其在异辛醇氧化过程中催化活性规律以及构效关系,发现Pd/Al2O3表现出较高的催化活性。结合X射线衍射(XRD)和透射电子显微镜(TEM)证实了催化剂制备过程中金属化学状态的转变,证明了还原后的Pd/Al2O3催化剂Pd金属分散度较高。使用X射线光电子能谱(XPS)确定了催化剂表面的金属价态,发现除Pd/Ce O2催化剂仍存在少量未还原的Pd2+,其他两种催化剂的金属均为还原态Pd~0。结合NH3程序升温脱附(NH3-TPD)的表征结果,分析认为载体上适量的酸位点可以减少副反应酯类物质的生成。金属活性组分的高分散以及载体适宜的物化性质是提高反应活性的重要因素。
其他文献
头孢硫脒是第一代头孢类抗菌药,用于治疗呼吸道、肝胆系统感染、败血症等,被广泛应用于临床治疗。然而,在头孢硫脒生产过程中存在产品稳定性差、晶型不纯、粒度分布不均匀等问题,同时其易形成溶剂化合物,在一定条件下脱溶剂转晶为无溶剂晶型,理化性质发生改变。针对上述问题,本文系统研究了头孢硫脒的多晶型现象、结晶热力学、溶剂化物的脱溶分子机理与结晶工艺。首先,通过冷却结晶、溶析结晶等方法制备了四种头孢硫脒溶剂化
学位
甲烷不仅是一种能源也是一种危害严重的温室气体,汽车或者工业尾气中甲烷的排放会带来严重的环境问题。与传统火焰燃烧处理法相比,甲烷催化燃烧技术更为高效。Pd/Al2O3催化剂在甲烷催化燃烧领域研究最为广泛,但其较差的低温催化活性、热稳定性及抗水蒸气毒化能力限制了它的进一步应用。本论文设计制备了类水滑石衍生Mg Al2O4尖晶石负载的钯基催化剂,并在甲烷催化燃烧反应中对其催化性能及构效关系进行了研究。本
学位
作为一种潜力巨大的新能源,氢能以其高热值、高清洁性受到极大的关注。但传统的氢气制备路径投资大、规模大且流程复杂,造成了氢气从生产端到使用端的割裂,为氢能的广泛使用带来了挑战。等离子体重整制氢作为一种新兴技术,具有设备体积小、流程简单、响应速度快等优点,在中小型分布式制氢场所与移动制氢场所均有着极大的应用前景。本文使用交流电源,采用刀片式滑动弧等离子体反应器进行了甲烷重整制氢的实验研究,同时在实验基
学位
丙烯是一种重要的化工原料,可用于生产多种有机化工原料、合成树脂及多种精细化学品等。近期,由于页岩气产量的急剧增长使得轻烷烃价格大幅下降,丙烷直接脱氢(PDH)大规模生产丙烯有了更重要的能源和环境意义。然而,商用的Pt基和Cr基催化剂具有价格昂贵和高毒性等缺点。因此,设计高效活化C-H键和高丙烯选择性的催化剂迫在眉睫。金属氧化物由于固有的路易斯酸碱性,可以选择性地活化C-H键。其中,氧化镓(Ga2O
学位
作为优质燃料和燃油品质改善剂,乙醇在可替代燃料市场应用前景广阔。合成气经二甲醚(DME)羰基化制乙酸甲酯(MA)、再由MA加氢制乙醇的工艺,具备反应条件温和、催化剂高效且廉价易得等优点,成为乙醇工业的新兴发展方向之一。其中,羰基化反应的低DME转化速率是限制其工业放大的瓶颈。在丝光沸石(MOR)催化剂上,DME羰基化活性与八元环(8-MR)中的Br(?)nsted酸(B酸)密度呈正相关。因此,本文
学位
镁合金具有良好的生物相容性,在体内植入领域具有巨大前景。因为其特殊的晶格结构,在力学与化学方面表现出强烈的各向异性。因此研究各向异性对其力-化耦合失效的影响是十分必要的。本文对三种取向的ZK60镁合金进行了应力控制的疲劳实验与中断实验,并使用Basquin模型进行寿命预测,结果发现RN-N取向的轧制镁合金疲劳寿命最短,在这种取向下沿c轴拉伸产生孪晶变体更多,此外孪生有利于滑移的产生,使材料更易发生
学位
各类电子设备及电动车的高速发展使人们对电池能量密度的要求日益提高,在现有商业化电池容量难以满足人们需求的情况下,研发具有高容量的新型电池材料是未来的发展方向。具有高理论容量的锂硫电池是极具发展前景的一种二次电池,其活性物质硫具有储量丰富,成本低廉且对环境污染程度低的优点。但锂硫电池同样存在着多硫化物穿梭效应、活性物质导电性差和充放电过程有体积变化等问题。本文利用水热合成法,制备了一种多壁碳纳米管及
学位
二氧化碳和乙烷氧化脱氢制乙烯工艺(乙烷的CO2-ODH),因其可以实现天然气和页岩气中大量存在的乙烷的资源化利用,同时降低二氧化碳这一温室气体的排放,具有很高的经济和环境效益,因此受到越来越多的关注。其中钒基催化剂由于可以通过其高-低价态间的氧化还原循环,以二氧化碳作为弱氧化剂,实现乙烷的氧化脱氢,得到具有高附加值的产物乙烯,因此具有良好的应用前景。本论文开展了钒基催化剂催化二氧化碳和乙烷氧化脱氢
学位
生物酶催化是一类以酶为催化剂进行物质合成与转化的绿色催化过程,因具有反应条件温和、催化活性高、产物选择性高等优势,被广泛应用于大宗化学品、医药化学品、精细化学品的合成。然而,胞外的游离酶易受热、酸碱等因素影响而失活。模拟自然界细胞结构,利用多孔材料载体原位包埋酶分子,可有效提升酶分子的稳定性和回用性。但仍面临合成步骤较繁琐、载体结构不规整、载体稳定性较差等缺点。论文针对上述问题,提出了“一锅法”共
学位
界面聚合是目前最常用且有效的制备纳滤膜的平台技术,通过界面聚合制备的聚酰胺(Polyamide,PA)纳滤膜广泛用于海水淡化、硬水软化和离子分离等领域。界面聚合过程调控一直是探索制备高性能聚酰胺纳滤膜的焦点,其中大多利用的是氢键作用,而氢键的短程作用特点在一定程度上限制了调控作用。与氢键作用相比,静电作用具有更长程的作用范围,有可能实现在更大作用力范围内调控界面聚合过程。本研究提出通过静电作用调控
学位