钛表面微弧氧化HA涂层上载药微球的负载及其生物学性能研究

来源 :河北工业大学 | 被引量 : 0次 | 上传用户:dh482600
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
骨肿瘤是威胁人类生命和导致人类残疾的重大疾病。在过去的30多年中,人们在治疗骨肿瘤的技术上取得了明显的进步,瘤段切除与重建的保肢技术逐渐取代了传统的截肢术。但是在临床治疗中,通常会在肿瘤切除手术后产生残留的肿瘤细胞和较大的骨缺损,从而使得肿瘤复发和肢体功能受损。因此,开发一种兼具抗肿瘤和促成骨的双重功能的新型植入体具有重要意义。钛(Ti)因其优良的力学性能和生物学性能而作为植入体材料被广泛应用,但其本身是生物惰性材料且不具备抗肿瘤生长功能,因此,在本文中首先采用微弧氧化技术在其表面制备具有促成骨的花瓣状羟基磷灰石(HA)涂层,然后在其表面负载具有抗肿瘤生长功能的载药微球,从而赋予其抗肿瘤及促成骨的双重功能。具体研究内容如下:(1)采用微弧氧化技术在钛表面制备了花瓣状结构的HA涂层,该涂层具有大量的孔洞和空隙,孔径达到微米尺度,为载药纳米微球的负载提供了良好的负载平台。(2)采用自组装的方法成功制备了球形规则、平均粒径约为117 nm的载紫杉醇木质素微球,并将其负载到HA涂层的孔洞及花瓣间隙中。相较于直接负载紫杉醇药物的HA涂层,木质素微球的包裹有效延缓了紫杉醇在HA涂层表面的释放。该载药涂层对人宫颈癌细胞(He La)生长具有明显的抑制效果,且没有明显的成骨细胞(MC3T3-E1)毒性。(3)采用乙醇注入法制备了形貌良好,平均粒径约为152 nm的载姜黄素脂质体微球,并将其负载到花瓣状HA涂层的空隙中。该载药涂层具有一定的缓释效果,对大鼠骨肉瘤细胞(UMR-106)有明显的抑制效果,但对小鼠胚胎成骨细胞没有明显的细胞毒性。
其他文献
Ti-Cu合金具有良好的比强度与比刚度,以及抗菌性能与生物相容性,在航空发动机、人体骨骼与义齿等方面被广泛的应用。研究发现Ti-Cu合金的微观组织对合金的性能具有重要的影响,为了进一步满足苛刻环境对Ti-Cu合金的性能要求,研究Ti-Cu合金微观组织转变机制具有重要的意义。基于此,本论文研究了Ti-(4,7,10wt.%)Cu合金的铸态与热处理态的组织演变规律、室温力学性能、断裂机制与模拟人体体液
学位
近年来,随着现代医药学的快速发展,抗生素被广泛应用于各个领域中。氟喹诺酮类抗生素是一类重要的广谱抗生素,广泛应用于治疗人类疾病和畜牧养殖,但过度使用会致使含有大量残留抗生素的废水被排至水环境中,导致生态系统和公众健康承受巨大风险。采用吸附技术去除废水中的抗生素是一种经济有效且环境友好的方法,高效吸附剂是吸附法大规模应用的前提和条件。多孔六方氮化硼具有孔隙结构多样和高温稳定性的优点,具备成为完美吸附
学位
目前,氢能在环境不断恶化的时代背景下被认为是很有前途的可再生清洁能源。高效稳定的固态储氢技术对氢能源的实际应用具有重要意义。其中,氢化镁(Mg H2)因其重量轻、理论储氢容量高、成本低和可逆性良好等优点而一度被认为是最有发展前景的固态储氢材料之一。然而,Mg H2还存在氢解吸速度缓慢和分解温度过高等固有缺陷。针对上述缺陷,本文将多种磷化物采用球磨法均匀地掺杂到Mg H2中,用以提高Mg H2的储氢
学位
作为过渡族金属硼化物陶瓷的一员,硼化铌(Nb B2)具有高强度、高硬度和良好的高温抗氧化性广泛应用于航空航天、军事和冶金等领域。另外,其也被认为是一种很有前途的涂层材料,用于飞行器鼻锥、航空发动机的喉衬、喷管位置以及耐磨损部件。然而由于Nb B2自身的强共价键和低扩散系数导致难以制备致密的Nb B2复合涂层。为实现Nb B2复合涂层致密化,将Nb-B4C和Nb2O5-B4C-Al反应体系引入等离子
学位
当前,以锂离子电池为代表的锂离子储能器件占据了市场的主要部分。然而与锂资源相比,钾具有地壳储量丰度高、电解液中迁移速率更快等优点,被认为是代替锂离子储能器件的重要技术路线。钾离子微型混合电容器(Potassium Ion Micro Hybrid Capacitors,PIMHCs)具备高能量/功率、长寿命等特点,是一种优选的后锂时代微型储能器件。为此,本研究主要分析了钛酸钾(K2Ti6O13,K
学位
尖晶石镍锰酸锂(LiNi0.5Mn1.5O4)材料以其高能量密度、三维锂离子扩散通道、成本低廉等优点成为最有前途的动力锂离子电池正极材料之一。然而高工作电压下电极/电解液之间严重的界面副反应以及晶体结构的不稳定性使其容量衰减迅速。本文从形貌调控入手,通过共沉淀与水热相结合的方法制备碳酸盐前驱体,经预烧、混锂、高温煅烧制得LiNi0.5Mn1.5O4材料。通过在共沉淀过程中加入表面活性剂来调控前驱体
学位
二维材料由于具有优异物理化学特性受到了人们广泛关注。其中,黑磷(BP)作为新兴导电二维材料,因具有独特的褶皱晶格结构和较高的气体吸附能,在传感领域受到了广泛关注。但是,目前报道的BP基气体传感器仍存在灵敏度低、环境稳定性差、选择性有限等问题。本研究通过自组装、自聚合等手段对BP纳米片进行表面修饰,有效改善了其环境稳定性并显著提高了其气体传感性能。主要研究内容如下:(1)通过自组装技术,对液相剥离的
学位
通过太阳能将CO2转化为高附加值化学品,对CO2减排和缓解能源危机具有重要意义。然而CO2是一种非常稳定的分子,这意味着CO2还原反应具有很高的能垒,采用光催化剂可以降低CO2还原反应的能垒,促进光催化CO2还原反应的高效进行。尽管已经报道了大量用于光催化CO2还原的催化剂,但其中大多数都存在载流子复合率高、选择性不可控、CO2捕获能力差等问题。因此,设计和制备用于光催化CO2还原的高活性催化剂依
学位
氮化硼(BN)气凝胶是一类由微纳BN结构单元组装而成的三维多孔轻质材料,在能源储存、催化剂载体、环境修复等领域具有广泛的应用前景。开发具有优异性能的BN气凝胶以及对BN气凝胶进行修饰改性对于实现BN气凝胶的实际应用具有重要意义。本文围绕基于多孔BN纤维的BN气凝胶的可控合成及修饰改性开展研究,主要研究内容如下:1.以硼酸和三聚氰胺为原料,通过超声辅助结合冷冻干燥制备了密胺二硼酸(M?2B)气凝胶作
学位
锂硫(Li-S)电池由于较高的理论能量密度(2600 Wh Kg-1)和理论比容量(1675 m Ah g-1)成为最有潜力的下一代储能系统。然而,多硫化锂的穿梭效应以及缓慢转化过程等问题严重影响了锂硫电池的电化学性能。利用催化材料加快锂硫电池中的缓慢动力学成为了实现锂硫电池优越性能的有效手段。因此,本文以杂原子掺杂碳为基体材料负载过渡金属单原子作为锂硫电池硫载体,一方面通过物理限制和化学吸附多硫
学位