黑磷气体传感材料的稳定性调控及传感性能研究

来源 :河北工业大学 | 被引量 : 0次 | 上传用户:skybey
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
二维材料由于具有优异物理化学特性受到了人们广泛关注。其中,黑磷(BP)作为新兴导电二维材料,因具有独特的褶皱晶格结构和较高的气体吸附能,在传感领域受到了广泛关注。但是,目前报道的BP基气体传感器仍存在灵敏度低、环境稳定性差、选择性有限等问题。本研究通过自组装、自聚合等手段对BP纳米片进行表面修饰,有效改善了其环境稳定性并显著提高了其气体传感性能。主要研究内容如下:(1)通过自组装技术,对液相剥离的BP纳米片进行化学修饰。利用氟硅烷水解获得活泼性硅醇与BP纳米片表面的含氧基团进行键合得到氟硅烷修饰BP(F-BP)。通过调节硅烷化反应时间,调控F-BP的表面亲疏水性能,从而改善其化学稳定性和气体传感性能。研究表明,F-BP在溶液分散体系中以及成膜后的化学稳定性显著高于原始BP。同时,基于F-BP的气体传感器表现出了优异的综合传感性能,如较高的灵敏度(2358%),低检测限(40 ppb),良好的选择性和柔性。同时,该传感器可在含氧、潮湿环境中长时间正常工作,并在相对湿度5%-95%变化范围内,对NO2传感响应保持稳定。(2)采用自聚合方法在BP纳米片表面包覆聚多巴胺(PDA)。PDA中含有大量的羟基和氨基,能够与多种气体分子形成氢键,从而有效提高BP的气体传感性能。研究表明PDA修饰的BP对NO2具有优异的传感特性,包括高灵敏度(4000%),低检测限(20 ppb)、宽传感范围(20 ppb-8 ppm)、快速的传感响应/恢复(41 s/101 s)以及良好的循环稳定性。同时,该PDA包覆层还可作为表面介层,进一步接枝其他有机小分子(如硅烷偶联剂)或贵金属纳米颗粒(如Pt或Cu),实现对材料表面性质和传感性能的进一步调控。基于以上研究,我们制备了包含5种不同类型的PDA-BP传感器的传感阵列,结合主成分分析法实现了对多种气体的高效识别。
其他文献
社会的不断发展对能源的需求也日益增加,传统化石燃料的长期使用除了存在供给量不足和开采困难的问题,还带来了各种各样的污染问题。而生物质能源获取来源广泛、可再生、存储量丰富且燃烧后不产生有毒有害物质,是一种清洁能源。而5-羟甲基糠醛(HMF)是一种重要的平台分子,可以从生物质糖类转化得到。并且通过转化可以生成一系列重要的化学品。本论文首先将高比表面积的氮化硼(BN)纳米片作为催化剂的载体,采用均匀沉淀
学位
为了增加对尾矿的多样化利用,本工作利用含铁废弃尾矿作为铁源,通过球磨法制备了基于含铁尾矿的催化剂,并将其应用于高级氧化技术中降解含双酚A(BPA)废水,以期达到“以废物治废水”的目的。本课题使用四种含铁尾矿催化剂进行降解实验,实验结果表明以钼尾矿为原料所制备的含铁尾矿催化剂(MT)具有最佳的活化性能,并且在MT/PMS体系中当溶液初始pH由3增加到9后,BPA的降解效率由100%下降到64.2%。
学位
为了探究负脉冲对7075铝合金微弧氧化涂层结构及性能的影响,本文通过固定正向电流密度为150 m A·cm-2,调整负向电流密度的方式制备了不同的微弧氧化涂层。首先分析了不同负向电流密度对电压-时间响应曲线和涂层形貌的影响,着重对比了负向电流密度为75和300 m A·cm-2(S1和S2)下微弧氧化反应行为的差异。通过分析电压-时间响应曲线、涂层形貌和物相组成等实验结果,研究了两模式下微弧氧化涂
学位
交通运输、航空航天以及军事领域的迅猛发展,不仅要求整体材料具有抗冲击吸能性能,而且希望能够在结构上具有轻质高强和吸能性能。铝基多孔材料可以很好的满足需求,但其制备工艺相对比较复杂,制造成本难以控制。本研究围绕铝粉和玻璃空心微珠粉末,设计制备出一种新型的铝基多孔复合材料。本论文采用预成型烧结法和热压烧结法,均可成功制备出玻璃空心微珠/铝复合材料。在烧结过程中,预成型烧结法与热压烧结法不同,热压烧结法
学位
Ti-Cu合金具有良好的比强度与比刚度,以及抗菌性能与生物相容性,在航空发动机、人体骨骼与义齿等方面被广泛的应用。研究发现Ti-Cu合金的微观组织对合金的性能具有重要的影响,为了进一步满足苛刻环境对Ti-Cu合金的性能要求,研究Ti-Cu合金微观组织转变机制具有重要的意义。基于此,本论文研究了Ti-(4,7,10wt.%)Cu合金的铸态与热处理态的组织演变规律、室温力学性能、断裂机制与模拟人体体液
学位
近年来,随着现代医药学的快速发展,抗生素被广泛应用于各个领域中。氟喹诺酮类抗生素是一类重要的广谱抗生素,广泛应用于治疗人类疾病和畜牧养殖,但过度使用会致使含有大量残留抗生素的废水被排至水环境中,导致生态系统和公众健康承受巨大风险。采用吸附技术去除废水中的抗生素是一种经济有效且环境友好的方法,高效吸附剂是吸附法大规模应用的前提和条件。多孔六方氮化硼具有孔隙结构多样和高温稳定性的优点,具备成为完美吸附
学位
目前,氢能在环境不断恶化的时代背景下被认为是很有前途的可再生清洁能源。高效稳定的固态储氢技术对氢能源的实际应用具有重要意义。其中,氢化镁(Mg H2)因其重量轻、理论储氢容量高、成本低和可逆性良好等优点而一度被认为是最有发展前景的固态储氢材料之一。然而,Mg H2还存在氢解吸速度缓慢和分解温度过高等固有缺陷。针对上述缺陷,本文将多种磷化物采用球磨法均匀地掺杂到Mg H2中,用以提高Mg H2的储氢
学位
作为过渡族金属硼化物陶瓷的一员,硼化铌(Nb B2)具有高强度、高硬度和良好的高温抗氧化性广泛应用于航空航天、军事和冶金等领域。另外,其也被认为是一种很有前途的涂层材料,用于飞行器鼻锥、航空发动机的喉衬、喷管位置以及耐磨损部件。然而由于Nb B2自身的强共价键和低扩散系数导致难以制备致密的Nb B2复合涂层。为实现Nb B2复合涂层致密化,将Nb-B4C和Nb2O5-B4C-Al反应体系引入等离子
学位
当前,以锂离子电池为代表的锂离子储能器件占据了市场的主要部分。然而与锂资源相比,钾具有地壳储量丰度高、电解液中迁移速率更快等优点,被认为是代替锂离子储能器件的重要技术路线。钾离子微型混合电容器(Potassium Ion Micro Hybrid Capacitors,PIMHCs)具备高能量/功率、长寿命等特点,是一种优选的后锂时代微型储能器件。为此,本研究主要分析了钛酸钾(K2Ti6O13,K
学位
尖晶石镍锰酸锂(LiNi0.5Mn1.5O4)材料以其高能量密度、三维锂离子扩散通道、成本低廉等优点成为最有前途的动力锂离子电池正极材料之一。然而高工作电压下电极/电解液之间严重的界面副反应以及晶体结构的不稳定性使其容量衰减迅速。本文从形貌调控入手,通过共沉淀与水热相结合的方法制备碳酸盐前驱体,经预烧、混锂、高温煅烧制得LiNi0.5Mn1.5O4材料。通过在共沉淀过程中加入表面活性剂来调控前驱体
学位