苯基二氧化硅微球对氧化石墨烯非共价稳化分散与应用

来源 :武汉理工大学 | 被引量 : 0次 | 上传用户:joycev
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
氧化石墨烯是一种二维片层纳米材料,作为石墨烯最重要的衍生物之一,具有优异的物理和化学性能,因此氧化石墨烯被作为增强纳米复合材料的理想填料。但是,由于氧化石墨烯层间存在范德华作用力和π-π堆叠作用,使其片层间发生不可逆的堆叠,降低了其在基体材料中的分散性,影响氧化石墨烯对基体材料的功能改性作用。因此解决氧化石墨烯在基体材料中分散问题是制备氧化石墨烯增强复合材料的关键。目前,氧化石墨烯的改性方法主要有共价改性和非共价改性。其中共价改性对氧化石墨烯的结构破坏较大,反应条件苛刻。而在非共价改性过程中,氧化石墨烯主要结构保留较为完整,反应条件温和。因此,氧化石墨烯非共价改性方法十分具有研究前景。本文主要基于氧化石墨烯与苯基改性二氧化硅微球之间的非共价作用力(π-π堆叠作用),通过调控苯基二氧化硅微球表面的苯基官能团含量,将苯基二氧化硅微球组装到氧化石墨烯纳米片上。通过傅里叶红外光谱分析、扫描电镜分析、透射电镜分析、热重分析和沉降实验等测试结果表明,5wt.%苯基三乙氧基硅氧烷改性的苯基二氧化硅微球和氧化石墨烯的纳米颗粒的非共价组装效果较好,没有明显团聚现象。在第一次分散实验过程中,样品静置360 min后,纯的氧化石墨烯样品的沉降率达72.3%,而5wt.%苯基三乙氧基硅氧烷改性的苯基二氧化硅微球修饰的氧化石墨烯样品的沉降率仅为10.0%。在二次分散实验中,纯的氧化石墨烯样品已经无法完全分散开,30 min内沉降率达90%以上,而改性后的氧化石墨烯样品在120 min时,仍表现出良好的分散稳定性。本文将苯基二氧化硅微球修饰氧化石墨烯纳米材料应用到聚苯乙烯树脂和石膏中,验证苯基二氧化硅微球对氧化石墨烯的稳化分散作用以及提高氧化石墨烯分散稳定性对基体材料性能的影响。研究结果表明,苯基二氧化硅微球提高了氧化石墨烯在聚苯乙烯树脂和石膏基体中的分散性,同时也提高了聚苯乙烯树脂材料的机械性能、热稳定性能和阻燃性能以及石膏试块的抗压强度。其中苯基二氧化硅微球修饰的氧化石墨烯对聚苯乙烯树脂复合材料的拉伸断裂强度提高了37.74%,杨氏模量提升了1.3814 GPa,玻璃化转变温度提升了10.7℃,初始分解温度提升了37℃,在一定程度上提高了聚苯乙烯树脂复合材料的阻燃性能。同时苯基二氧化硅微球修饰氧化石墨烯纳米颗粒对石膏试块的2 h抗压强度提升了25.4%,而掺入纯氧化石墨烯的复合材料未表现出优异的性能。
其他文献
固态电池由于其高安全性、高能量密度和宽工作温度区间受到了人们的广泛关注,并成为日益增长的电子消费市场中潜在的电化学储能设备发展方向。聚合物固态电解质作为最常见的固态电解质有着易制造、高柔韧性、低成本、质量轻等优点,但是它较低的离子电导率和较差的机械性能限制了其发展。无机陶瓷固态电解质具有较好的机械性能和较高的离子电导率。然而,它们与电极间界面接触差的问题还需解决。复合固态电解质能够结合这两种电解质
学位
骨肉瘤是一种高转移性的恶性肿瘤,患者生存率较低。目前骨肉瘤的治疗方法主要是外科手术和放/化疗相结合。切除手术会导致大块的骨缺损,同时术后还会残留一些肿瘤细胞。对于骨肉瘤切除手术后造成的骨缺损,可以采用传统的骨修复材料进行填充诱导修复,但是对于可能残余的骨肉瘤细胞却无能为力。因此,临床上需要开发一种新型的兼具抗肿瘤和骨修复功能的组织工程仿生材料,在治疗骨肉瘤的基础上促进骨组织再生。针对骨肉瘤术后治疗
学位
SBS改性沥青防水卷材以其优异的高低温性能得到广泛应用。然而,由于SBS与沥青在化学结构和物理性质上的差异,使SBS与沥青相容性差而会产生相分离,导致SBS改性沥青的性能降低,故常采用硫磺类稳定剂来改善SBS改性沥青的相容性。但硫磺的使用会使SBS改性沥青的抗老化性能下降。为解决该难题,本文采用对苯醌二肟(GMF)为稳定剂,并与防老剂协同使用,以提高SBS改性沥青的高低温性能和抗老化性能,延长防水
学位
高结晶度透明微晶玻璃不仅具有玻璃的透明度高、物理化学稳定性优异、制备简易等优点,还具备了晶体材料优异的发光特性等,是新型的固体光功能材料之一。因其具备优异热力学及光学性能,在国防技术、医疗安全、微电子技术等领域具有广阔的研究前景。本文通过在钠钙硅玻璃体系中引入成核剂ZrO2、添加剂B2O3,采用传统的高温熔融法制备出基础玻璃;通过二步法热处理方式制备出了高结晶度透明的微晶玻璃。在此基础上研究了不同
学位
固体激光器的关键在于激光增益介质,而激光增益介质的性能由两方面决定的:一是基质材料;二是激活离子。在基质材料的选择上,往往倾向于对称性较高的基质材料,如YAG、CaF2和Y2O3。因为高对称体系材料没有双折射现象,这对光学透过率的提升大有裨益。但就发光性能来说,稀土离子在低对称体系往往有较好的表现,现如今对于非对称体系的研究日渐增多,如α-Al2O3、S-FAP和LSO。但是从不对称性的角度出发,
学位
透明微晶玻璃是由纳米晶和玻璃相组成的复合材料,通过组成设计及对热处理制度的控制,可以在基础玻璃中析出纳米尺寸且分布均匀的晶粒,使得微晶玻璃保持高可见光透过率,同时具有相比基础玻璃更优异的机械性能、耐磨性、化学稳定性等优点,因此透明微晶玻璃成为了移动终端产品的优选盖板材料,特别是在2020年,苹果公司发布的iphone12产品全系列采用“超瓷晶”盖板,更是引领了透明微晶玻璃作为高端手机盖板的风潮。本
学位
表面增强拉曼散射(Surface-Enhanced Raman Scattering,SERS)技术为分子痕量检测提供了一种新的方法。SERS基底是表面增强拉曼散射技术的关键,银具有超宽表面等离子体共振响应范围且是最优的表面等离子体材料,因此广泛应用于SERS研究中。光纤的引入使SERS技术向原位检测和远程监测等方向发展。本文探究影响银纳米材料形貌及尺寸的因素,以及银作为SERS基底对SERS性能
学位
硅橡胶材料是我们生活中不可缺少的一部分,许多器具和电子材料都会用到硅橡胶。硅橡胶有质轻、流动性好、全体绝缘等优点。但是,大部分的硅橡胶导热性较小,高温使用容易影响电子材料的寿命。因此,本论文选用高导热绝缘的氮化硼(h-BN)作为导热填料,旨在不破坏其流变性能的情况下,探究硅橡胶的导热绝缘性。主要的研究内容和结果如下:(1)小尺寸的填料由于自身独特的性质更能很好地提高基体导热性。因此,本章选用氮化硼
学位
微孔发泡注塑成型工艺因能产生大量均匀微小的泡孔,大幅降低材料的重量、提高材料的尺寸稳定性和隔热隔音性能,广泛的应用于汽车等领域,但泡孔的存在会减少材料在受载时的承载截面积,尤其当泡孔结构较差时,会使得发泡材料的韧性急剧降低,这极大的限制了这项工艺的应用。由于PP自身的熔体强度较低,纯PP发泡材料中的泡孔结构和韧性较差。本文基于PP发泡材料中泡孔结构和韧性较差的问题,通过加入不同的弹性体(POE、E
学位
2030年前“碳达峰”、2060年前“碳中和”等国家重大战略目标的提出,进一步促进了绿色新能源产业的发展。氢能作为化石能源的理想替代品,因此受到人们的广泛关注。电解水制氢是现有氢气制备途径中最具有发展潜力的方法之一,能够促进产氢的脱化石资源、低碳绿色和分布式发展。然而,电解水技术目前严重受限于缓慢的析氢、析氧动力学及大量昂贵的Pt、Ru、Ir等Pt族贵金属催化剂的使用。因此,合理构筑痕量贵金属修饰
学位