基于3D卷积神经网络的脑肿瘤影像分割和生存期预测研究

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:sophia115416
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
脑肿瘤又称脑胶质瘤、脑癌,是最具侵袭性的肿瘤之一,无论对患者的身体上还是心理上都威胁极大。核磁共振成像技术由于成像质量高,且对人体没有伤害,在临床上被广泛应用于肿瘤图像的采集。然而脑肿瘤图像十分复杂,不同肿瘤亚区的边界具有一定的模糊性,这使得脑肿瘤分割工作变得非常困难。当前主要是依靠医生或专家手动进行分割,不但效率低,而且医生在长期高强度的工作下可能会导致分割精度的下降。另外,为了能帮助医生进行临床决策,制订更合适的诊疗计划,对脑肿瘤患者进行精准的生存期预测也是非常必要的。目前主要的生存期预测方法是医院或学者制定的各种评分预测模型,虽然使用方便,但在分值的设定和特征的选择上缺乏一定的科学性,而且预测准确率普遍较低。因此,如何使用计算机方法对脑肿瘤图像实现精确的全自动分割并对患者的生存期进行预测始终是学术界的一个热门研究方向。针对脑肿瘤分割问题,本文在2D图像上设计了多路径TS-U-net(Teacher Student U-net,TS-U-net)模型,主要创新点是使用了有效的数据扩充方法、加权的交叉熵损失函数、添加了多路径注意力机制,分别解决了数据不足、脑肿瘤图像类不平衡和多模态数据丢失的问题。在3D图像上分别设计了传统3D U-net、基于mixup的3D U-net和基于全变分的3D U-net模型。3D网络由于能够充分利用相邻切片之间的信息,相比于2D网络具有更好的分割效果。与其它最先进的脑肿瘤分割模型对比,本文设计的3D模型取得了具有一定竞争力的分割精度。针对生存期预测问题,本文验证了多个机器学习模型,并设计了基于特征筛选的生存期预测模型。该模型将从肿瘤分割结果中提取的特征和年龄等信息作为输入,并根据对模型的影响因子对特征进行筛选,去除掉了与生存预测无关的特征,减少了模型的过拟合,提高了模型的预测准确率。本文使用的数据集来自MICCAI(Medical Image Computing and Computer-Assisted Intervention,MICCAI)会议举办的针对脑肿瘤核磁共振图像分割和患生存期预测两个任务的挑战赛Brats 2019(Brain tumor image segmentation 2019,Brats 2019)。在脑肿瘤分割任务上,本文设计的基于全变分的3D U-net模型在三个脑肿瘤亚区的dice系数分别为0.90、0.877和0.846。与Brats 2019分割挑战赛第一名的0.91、0.867、0.823相比,在第二和第三个亚区的分割精度分别提升了0.01和0.023。在生存期预测任务上,本文设计的基于特征筛选的生存期预测模型准确率达到了0.59,与Brats 2019预测挑战赛第二名(第一名没有提供具体预测准确率)的0.61十分接近。上述结果证明了本文设计的脑肿瘤分割模型和生存期预测模型的有效性。
其他文献
近年来,随着海洋事业的发展,各国对于水声通信系统的研究越来越重视。水声前导信号的检测是水声通信中一个重要模块。前导信号的误检和漏检一方面会导致通信的失败,另一方面还会对水声通信设备的寿命造成影响。而水声信道作为目前最复杂的信道之一,其多径效应严重、多普勒效应明显、干扰种类繁多的特点导致水声前导信号的检测困难。本文从两个方面研究了前导信号的检测和识别问题,并对所提出的方法进行深入的理论性能分析,该理
伴随着移动互联网和人工智能的迅速发展,各类移动终端应用越来越大型化,对于计算资源的需求也越来越高。由于移动终端的设备和体积限制,其计算能力和能耗都无法完美地支撑应用在本地运行。传统的云计算范式在处理计算任务时,通常存在较高的传输时延,因此无法满足时延敏感型应用的时延需求。由此,研究者提出了移动边缘计算,其核心思想是将云计算的部分处理能力下沉至距离用户更近的网络边缘端,从而可以很好的解决以上问题。显
第五代移动通信技术由于其具有满足海量数据的传输的特性,成为了实现万物互联的关键技术之一。而信道编码技术作为其中对抗信道传输干扰的重要手段,编码的性能直接影响了通信领域中的信息传输速率。Polar码作为一种发展时间较短的码字,在第五代移动通信技术的标准制定中成为其增强移动宽带(Enhanced Mobile Broadband,e MBB)应用场景下的短码标准。通过研究发现,虽然Polar码在特定的
随着单无人机向多无人机协同技术的发展,多无人机应对不同需求实现编队控制的应用场景增多。相对单无人机,多无人机能够携带不同设备,完成单无人机无法完成的任务等优点,目前的多无人机编队控制仍有协同能力低,自主能力不足,无法应对突发情况,实时性低等问题,无法满足不同飞行任务对编队队形控制的要求,因而展开关于群体智能控制方向的多无人机编队控制研究迫在眉睫。为解决上述问题,将多无人机协同编队控制问题,分为编队
随着移动终端设备数量的增长和人工智能技术的发展,移动设备对运行实时应用(如人脸识别、AR/VR)的需求大幅增加。然而,资源有限的移动设备通常无法承载此种计算密集、时延敏感的应用,导致用户体验的下降。如果采用传统的云计算解决方案,也存在传输延迟过长、流量拥塞,大量数据处理成本和通信成本高的问题。在此背景下,移动边缘计算(Mobile Edge Computing,MEC)将计算基础设施从远程云数据中
无人机集群自组网相比于地面MANET网络,在三维空间中具有更大的灵活性,在军事和救灾场景下具有重要的应用意义,与此同时,由于无人机之间距离远,无人机集群网络更加稀疏,无人机飞行速度较大,通信链路容易中断失效,进行三维空间网络拓扑控制要考虑更多的因素,而现有的二维平面网络拓扑控制技术应用在无人机集群自组网具有很大的局限性,因此,研究基于三维空间的有效拓扑控制是有必要的。为了构建具有一定容错性和抗毁能
随着互联网时代的到来,各种信息的数字化在人们的生活中随处可见。比如之前学生上课大多采用纸质书籍作为信息承载媒介,而近年来课件、PPT等电子授课工具越来越流行。甚至出于成本的考虑,电子化书籍也在学生中颇受欢迎。但是与此同时也带来了一系列的问题,比如电子化书籍中的PDF或者图片中的文字无法像文档一样直接编辑,为信息查找、修改或者统计录入带来了诸多不便。针对这些问题,本文提出了一个基于隐马尔可夫模型的文
阿尔茨海默病作为最常见的老年疾病之一,其主要表现为患者认知功能下降并逐渐丧失生活能力。该疾病具有隐匿性和不可逆性,尽早的诊断与干预对延缓病情发展对提高患者生活质量具有重要作用。研究表明阿尔茨海默病会导致患者大脑结构形态畸变,其中最典型的脑部结构是海马体。因此磁共振影像中海马体形态变化研究有助于疾病的早期诊断以及对疾病的发生和进展机理的进一步研究。目前磁共振影像中阿尔茨海默病海马体形态学研究方法仅从
卫星物联网(Satellite-based Internet of Things,S-Io T)能够突破现有地面网络仅覆盖20%左右陆地范围的局限,实现全球立体覆盖下的宽带接入。S-Io T已成为下一代移动通信的重要发展方向之一。本文面向未来S-Io T服务于地面终端的典型业务场景,综合考虑卫星受限的功率资源、星地长距离链路导致的大传播延时以及信号衰落,设计了基于网络编码(Network Codi
伴随着信息时代的发展,人们的数字娱乐生活越来越丰富,智能手机提高人们生活品质的同时也对无线数据业务的提出了新的要求。在第五代移动通信(Fifth-Generation Mobile Communication,5G)时代,移动无线网络不仅仅需要提供几十倍于4G(Fourth-Generation Mobile Communication)的峰值传输速度,更需要保证毫秒级的数据传输时延。当前的商用的