神南煤矿区下行裂隙微生物介入修复技术的实验研究

来源 :西安科技大学 | 被引量 : 0次 | 上传用户:ganggang821010
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
煤炭资源是支撑国计民生的重要基础之一,而大规模高强度的煤炭开采所产生的下行裂隙,必然引起生态脆弱矿区水资源流失和生态环境恶化等问题。目前,用于修复煤炭开采下行裂隙的材料常含有化学添加剂,虽能填堵裂隙,但同时也可能造成生态环境的化学污染。微生物介入修复技术是一种基于微生物诱导碳酸钙沉积(MICP)的新型环保固土技术。本文旨在将MICP应用在陕北神南煤矿区煤层开采形成的下行裂隙修复中,通过对下行裂隙的微生物介入修复关键技术开展实验研究,为实现煤炭资源的绿色开发和地下水资源的有效保护探索新的途径。本文选用巨大芽孢杆菌,对试样裂隙进行了 MICP加固处理;通过正交实验,揭示了充填骨料组分、菌液浓度等因素与固化试样力学、水理性质的关系,取得了关键技术参数;通过电镜扫描观测试样裂隙修复后微观结构的变化,评价了 MICP对下行裂隙的修复效果;借助Matlab软件的Simulink仿真系统搭建了 R-C网络模型,对MICP技术在神南煤矿区推广应用后地下水位的变化进行了模拟预测。研究发现:MICP技术可在一定程度上修复加固煤层开采在上覆土体中形成的下行裂隙,有效改善受损土壤的力学和水理性质。随着裂隙充填骨料中的砂含量增加,试样力学强度提升,但渗透系数随之增大;加入煤矸石有利于降低渗透系数,但其含量过高时影响微生物的固化效果;高浓度菌液对裂隙的修复能力强于低浓度菌液,随着菌液浓度升高,试样渗透系数降低。研究认为,将充填骨料中煤矸石、黏土与砂的质量配比控制在1:1:2,并加入较高浓度的巨大芽孢杆菌菌液,分层充填入裂隙,既能有效降低裂隙充填物的渗透系数,又能改善其力学性能。微生物介入修复技术可以有效修复煤层开采下行裂隙,且不会产生二次污染,有工程应用的可行性和广阔前景。但在实际应用之前,还须攻克充填技术难题,进一步完善修复工艺和相关技术体系,以便更好地为生态环境保护提供技术支撑。
其他文献
液压支架是煤矿综采工作面中的关键设备,主要对采场空间起安全支护作用,其性能直接影响工作面采、运设备运行环境和作业人员的安全,进而影响工作面的推进和生产效率。以液压支架为支护设备的长壁综采技术早已经是煤矿井工开采的常规开采工艺方法,但是液压支架与围岩顶板之间的力学作用机理尚有许多认识不足。本文以液压支架为研究对象,将支架结构的多刚体、被支护围岩顶板的岩体和产生主要支撑力的液压油缸的液体以不同的力学形
在“一带一路”建设进程中,西安作为重要节点城市,城市化进程不断加快,地铁的持续建设也迎来了巨大的机遇与挑战。2020年底,西安在原有的4条地铁线路基础上开通运营了5号线,6号线一期和9号线三条地铁线路。随着线路的增多,地铁站对管理资源与管理标准的需求在不断上升,同时对组织管理结构进行优化也迫在眉睫。目前,西安地铁正处于运营发展的瓶颈时期,地铁站点的增多、地铁本身的位置劣势和现今节假日大客流的聚散现
自主定位与导航技术是无人驾驶车的核心关键技术,也是无人车领域近年来研究的热点。在城市道路环境中,由于交通状况复杂多变且无法预测,社会对无人车安全性、稳定性和经济性要求的不断提高,当前的自主定位与导航方法都存在一定的局限性。本文重点研究城市道路下无人车的自主定位与导航技术,主要研究内容如下:(1)分别研究相机、IMU和固态激光雷达的传感器模型,对相机/IMU和激光雷达进行联合标定,提出融合视觉/IM
车载钻机机动性好,机械化程度高,常用于煤层气开采以及矿山灾害事故应急救援,具有很好发展潜力。但是目前国产车载钻机的自动化程度不高、钻进效果对操作人员的依赖性强,且对复杂地层的感知能力和适应能力不足等,还需要进一步研究以提高其高效化,自动化以及智能化程度。针对以上问题本文进行了以下研究:(1)针对全液压车载钻机自动化程度不高的问题,在分析钻机功能和工艺要求基础上,进行钻机负载敏感电液控制系统设计,并
机械设备在运转过程中往往会出现由于超负荷运行或长期缺乏有效维护造成因故停机的情况,从而给企业带来巨大经济损失和安全隐患。齿轮箱作为机械传动的核心部件迫切需要对其运行过程进行监测与故障诊断,防患于未然。大多数状态监测和故障诊断技术均以设备运行过程中的振动信号为手段,通过分析不同状态下信号频率特征来确定设备状态及故障类型。然而,对设备磨损故障,直接研究磨损产物——磨粒,较振动信号能更直观准确地表达设备
在小型燃气轮机和增压系统中,叶轮能提高燃油利用效率、降低能耗,增加发动机的输出功率,同时叶轮的表面质量对效能的转化有着重要的影响。论文以涡轮增压器叶轮为研究对象,首先,研究了基于NURBS曲线曲面的叶轮三维造型,根据已知型值点实现节点矢量和控制点的反算,利用NURBS曲线拟合叶片叶根线和叶顶线,利用NURBS曲面拟合叶片直纹面和轮毂面,得到基于NURBS曲线曲面的叶轮三维造型,为叶轮混合维造型提供
相比于传统贵金属等离激元,石墨烯等离激元由于其动态可调谐性、极强的近场局域性、低损耗等性质,被广泛应用于光电探测、光电调制和光学传感等领域。现有的基于石墨烯等离激元效应的传感器往往只有单一的谐振模式,无法满足分子多种指纹谱的检测需求。针对上述问题,本文通过设计石墨烯等离激元多谐振分子指纹检测器件结构,增强被测分子的振动指纹信号,从而实现对分子多种指纹谱的检测,为石墨烯等离激元效应在分子指纹检测中的
近年来,智能驾驶系统在预防交通事故的发生中得到越来越广泛的应用,但同时也存在一些问题与挑战,例如,当前的智能驾驶系统不仅在对外界目标信息的理解上与驾驶员存在解释性差异,而且也无法像真正的驾驶员一样通过对交通场景的分析做出正确的决策。因此本论文以智能驾驶系统中的视觉注意机制为背景,结合驾驶员真实的操纵行为以及深度学习技术,对驾驶员视域内的注意区域提取方法进行研究,旨在通过预测驾驶员的注意点,来提取影
随着无线通信的飞速发展,通信系统的功率消耗急速增加,排放的二氧化碳等温室气体也逐渐增加。为了满足绿色通信的需求,系统的能效研究成为5G通信研究的热点问题之一。大规模MIMO技术作为5G的关键技术之一,由于其在基站端配置大量的天线,从而显著提高通信系统的容量。然而,随着天线数目的增加,系统消耗的总能量也在增加,从而导致系统的总能效下降。因此,对大规模MIMO系统能效的研究成为无线通信领域的重要研究内
土地覆盖数据是气候变化研究、生态环境建模、陆表过程模拟、地理国情监测等不可或缺的重要基础数据。近年来,随着遥感技术和计算机存储及计算能力的不断提升,全球土地覆盖制图取得了突破性的进展,正逐步从中低分辨率向30米中高分辨率过渡。然而,考虑到地球系统本身的复杂性和各产品制图策略间的差异性,用户如何从多种全球30米土地覆盖产品中挑选最合适的数据集依然存在较大的不确定性。因此,本研究聚焦于全球30米土地覆