新型类石墨相氮化碳复合材料进行可见光分解水制氢的研究

来源 :深圳大学 | 被引量 : 0次 | 上传用户:liu0686
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
当今全球的能源消耗十分依赖化石燃料,而化石燃料的开采和燃烧加剧了环境污染及温室效应,其中机动车的尾气排放,是城市雾霾的主要元凶之一。光催化技术为我们提供了一种用清洁可再生的氢能替代传统化石燃料的方案。然而,设计出一种更加高效,化学性质稳定和成本可接受的催化系统以应用于工业生产仍是巨大挑战。在本论文中,首次用简单可行的办法在合适条件下将p型Mo S2纳米片负载在了生长着Ni2P颗粒的片状n型g-C3N4上,合成出了一种地球储量丰富、环境友好的可用于光催化裂解水产氢的新型复合材料。首先,我们在超声下将水热法制备的Mo S2纳米片与通过简单的煅烧工艺合成的g-C3N4/Ni2P混合,制备了三元Mo S2–g-C3N4/Ni2P复合材料。所制备的Mo S2–g-C3N4/Ni2P催化剂通过X射线粉末衍射(XRD),X射线光电子能谱(XPS),场发射扫描电子显微镜(FE-SEM),高分辨透射电子显微镜(HR-TEM),傅立叶变换红外光谱(FT-IR),紫外可见漫反射光谱(DRS)和光致发光光谱(PL)进行了有效的表征。以上表征结果证明Ni2P和Mo S2都均匀负载在了g-C3N4表面上。其中SEM和TEM显示g-C3N4为薄片状,Ni2P为均匀颗粒状,Mo S2为纳米片状,Mo S2层数不定,大约为5层上下。在5℃真空环境下,用300 W氙弧灯搭配紫外线截止滤光片(λ>420 nm)作为光源进行光催化产氢活性及稳定性测试实验,其中最优的Mo S2–g-C3N4/Ni2P材料在可见光照射下表现出最佳的产氢性能,产氢速率最大达到298.1μmol·g–1·h–1,是单纯的g-C3N4的69倍,量子产率达到2.51%,并且在多次循环测试后依然能保持稳定的产氢速率。电化学工作站测试材料的光电转换性能,基于各项表征及产氢和电化学测试结果的分析,提出了一种可能的电荷转移机制,二维的Mo S2–g-C3N4 p-n异质结可以有效地促进电子–空穴对的分离,而Ni2P可以显著增强质子还原效率。通过本论文的研究,我们能够对复合光催化的设计和应用有一定的认识,为工业化光解水产氢提供一个可行的实验理论依据。
其他文献
目的:Tau蛋白是一种基因位于常染色体17号位的微管相关性蛋白,其生理功能主要是装配和稳定微管细胞骨架。过度磷酸化的tau蛋白会自身聚集形成纤维缠结,该纤维缠结是阿尔茨海默症(AD)的一个重要病理特征。因此,靶向tau聚集是治疗AD等退行性疾病的一种有效策略。本论文基于tau蛋白聚集开展实验,旨在从tau蛋白聚集抑制剂方向筛选出一种或几种天然化合物成为潜在治疗AD的药物。方法:硫磺素-T(ThT)
从通信网到交通运输网、电力网、社会关系网和生态网等,复杂网络已无处不在,人类已进入了网络时代.复杂网络由海量节点以及节点间的连边所构成,是一种描述自然、社会和工程中相互关系的高度复杂模型,其复杂性体现在节点和结构的复杂性、结构与节点之间的相互影响、网络之间的相互影响等.网络同步作为重要的网络协调性行为是网络科学研究的重点内容之一,近年来已成为了非线性科学的热点研究课题,也涌现出大批优秀成果.这些成
金属-空气电池是一种化学能转换为电能的装置,具有清洁高效、能量密度高、无有害排放等特点,能够解决日益突出的能源和环境问题。然而,阴极氧还原反应(ORR)缓慢的动力学及昂贵的催化剂成本和贵金属催化剂的稳定性不足制约着其大规模的应用,因此开发经济高效、易于规模化生产的阴极氧催化剂具有重要的实践意义。相对于贵金属,储量丰富、价格低廉和本征催化活性优异的过渡金属氧化物催化剂上显得非常有潜力。研究表明:由于
本论文的研究主题为新能源转化与储存技术,例如金属-空气电池,重点关注在此过程中发生的动力学缓慢的氧还原和氧析出催化反应,我们致力于开发高效清洁的催化剂材料促进反应的进行。钙钛矿氧化物是一类晶体结构和组成可调且本征催化活性高的材料,我们通过对其进行金属析出、氮表面改性、碳氮包覆等工作构建异质结构并增加表面氧空穴含量,从而有效提升材料的电催化活性。采用高效的静电纺丝技术制备表面具有孔结构的钙钛矿氧化物
水中的有机污染物特别是多环芳烃(PAHs)具有“三致”作用:即致癌、致畸和致突变,因而对人类生活造成极大的威胁。脂质纳米载体具有生物相容性好、无毒、无污染的优点,主要用于药物与食品载体领域,但其在环境保护领域的应用较少。PAHs是芳香族类化合物,具有低水溶性和高脂溶性的特征,易于从水中分配到沉积物和有机质中,并且能够在脂肪组织中蓄积。基于此,提出一种模仿PAHs在生物体脂肪富集效应,采用脂质纳米载
癌症目前已经成为致死率最高的疾病之一,但是当前研发肿瘤新药的难度越来越大,因此为了解决单一用药药效不佳的问题,常常采用多种药物联合使用的情况。盐酸阿霉素为一种亲水性的广谱抗肿瘤药物,姜黄素是脂溶性药物,两者联用可以减轻阿霉素毒副作用,产生协同作用。单一载体难以满足共同负载溶解性质不同的药物的要求,因此,设计一种“核-壳”结构的介孔硅核脂质复合纳米载体,以介孔二氧化硅为内核,吸附阿霉素,以脂质为外壳
经济的高速发展伴随着环境污染、能源的过度消耗等问题。为了适应高速发展的能源需求以及缓解环境问题,人们开始探索木质纤维素生物质等可再生能源的利用方法,利用木质纤维素生物质转化成燃料和化学品是解决能源短缺的新途径。但是在木质纤维生物质转化的过程中,废渣的形成以及处理成了新的难题。由于木质素和胡敏素是木质纤维素生物质在催化转化生产乙酰丙酸和5-羟甲基糠醛过程中不可避免的副产物,因此,对木质素和胡敏素的高
近年来,正渗透水处理技术因其不需额外的驱动力,以及相对较低的膜结垢趋势和较高的水回收率在水处理领域受到了广泛的研究和关注。而在正渗透膜中,薄膜复合型正渗透(TFC-FO)膜又以其经典的双层结构、易于改性等特点格外受到研究者们的青睐。目前已有将TFC-FO膜应用于水体脱盐、废水处理、发电、食品行业以及医药行业等研究,表明薄膜复合型正渗透膜有着极大的应用潜力。然而,在实际应用过程中仍面临着诸如浓差极化
近年来,随着市场对新能源汽车需求的不断扩大,作为其重要组成部件的锂电池也得到了大力发展。激光焊接是锂电池制造的关键技术,为了控制生产质量,工业界迫切需要激光焊后锂电池表面焊接质量检测系统。作为焊接质量检测的主要方式之一,机器视觉技术能够对焊接后的产品进行快速、准确的检测。本论文在课题组前期机器视觉检测的工作基础上,提出了基于深度学习卷积神经网络的焊接视觉检测方法,目的是设计低功耗,高效率,高准确率
氢能是解决当下全世界面临的能源危机和环境污染的有效能源载体,结合太阳能和风能等可再生资源的电解水产氢是一种极具前景的氢气生产方式,且能解决前者的分布不均匀和间歇性等问题。但是电解水的两个半反应,氢析出和氧析出反应的室温过程均存在动力学缓慢的问题,需要催化剂加快反应速率及降低能耗。贵金属Pt/C和Ru O2、Ir O2分别被认为对氢析出和氧析出反应具有优异的催化活性,但是贵金属存在储量低、成本高等问