基于低居里点纳米颗粒磁流体的热疗温度场数值模拟分析

来源 :大连理工大学 | 被引量 : 0次 | 上传用户:zjlzjl943
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
作为新兴的肿瘤治疗技术,磁流体热疗具有适形性好及靶向性高等优点,但热疗温度场的精确调控是该技术临床应用的难点之一。低居里点纳米颗粒在温度接近居里点时产热能力逐渐减弱,可以实现自主控温,防止肿瘤过热,具有临床应用潜力。温度场数值模拟是制定磁流体热疗治疗方案的常用指导方法,具有周期短和成本低的优点。然而由于低居里点纳米颗粒的比损耗功率(specific loss power,SLP)与温度(T)之间的量化关系不明确,导致其磁热疗温度场数值模拟研究匮乏。因此,本文以课题组研发的低居里点磁纳米颗粒为例,建立纳米颗粒的SLP-T关系,利用有限元分析热疗时肿瘤内的温度场,为低居里点纳米材料的磁热疗应用提供参考。主要研究内容如下:(1)搭建磁热升温曲线测量实验平台,测定了居里点为37.5℃、56.0℃和61.0℃纳米颗粒的SLP-T关系。实验结果表明,当温度高于37℃(体温)时,三种颗粒的SLP均随温度T的升高而下降,且居里点越低,下降趋势越明显。建立肿瘤内颗粒均匀分布的热疗模型,将SLP-T关系用于温度场模拟。结果表明,在磁流体体积一定时,居里点较低的纳米颗粒磁流体需要更高的质量浓度,才能使肿瘤最高温度达到温热疗法温度上限(46℃),但肿瘤升温更快,相同时间内累积的热剂量更大。(2)参照金属晶胞形式,提出了磁流体仿体心立方、仿面心立方和仿密排六方的多点注射方案,以温热疗法(42℃-46℃)的有效治疗体积为评价标准,研究了磁流体分布和注射点间距对肿瘤热疗温度场的影响。结果表明,磁流体多点注射能够改善单点注射时热量集中和温度场不均匀的缺点,使有效治疗体积增加。多点注射时,增加注射点间距,可以避免热量聚集,减小过热体积;增加肿瘤边缘处的磁纳米颗粒质量有助于增加有效治疗体积。仿体心立方注射方案中,边缘处磁流体占瘤内磁流体总量的比例较大,因而有效治疗体积较大。(3)建立含血管的肿瘤模型,研究了血管位置和半径对热疗温度场的影响。结果表明,当血管位于肿瘤外的健康组织中时,血管中的血流散热对肿瘤内的温度场影响很小。当血管位于肿瘤内部时,血管内的血液流动会引起热量流失,导致肿瘤最高温度相较于无血管时下降了1.6℃-4.6℃。血管半径由1.5 mm增加到2.5 mm会导致肿瘤最高温度相较于无血管时下降3.7℃-4.7℃。此外,通过Brinkman方程和连续性方程求解流场,采用自由扩散和对流扩散模型求解浓度场,研究了颗粒扩散对热疗温度场的影响。结果表明,颗粒在肿瘤中扩散会导致瘤内温度下降,引起有效治疗体积减小。
其他文献
在空天飞行器及航空航天领域,基于结构拓扑优化理论的轻量化设计应对复杂情况的需求逐步增加。对于给定的载荷,板或壳结构的刚度和振动特性可以通过增加肋或加强筋而显著增强。然而,传统隐式拓扑优化框架下的加筋设计通常存在设计变量数目多、计算效率较低、边界描述较差以及无法顺利对接传统建模软件等问题。同时针对复杂的异型结构体加筋优化问题仍需开发严谨高效的加筋优化设计算法。为了解决上述问题,本文选择了一种新的拓扑
学位
目前,我国人口老龄化问题日益突出,身体机能的下降,导致老年人无法承受大型外科手术。因此,研发无创诊疗设备已成为未来医疗器械研发领域的重要发展方向。超声治疗是一类极具应用前景的无创诊疗技术,利用超声波束的方向性、可穿透性、聚焦性等特点,在体外发射高强度超声波并聚焦于病变组织,在消灭病变组织的同时将对人体的伤害降到最低。但是现有超声治疗设备采用的传统电声换能器,发射声波频率限定于固有频率附近,无法实现
学位
本文以镍/碳化钨(Ni-WC)粉末材料作为研究对象,采用爆炸压焊-扩散烧结法制备镍/碳化钨金属复合涂层材料。爆炸压焊-扩散烧结法是多种爆炸加工方式的有机结合,该方法不需要专门设备,具有很高的工作效率,且制备出的复合材料质量高,是一种操作简单且发展前景广阔的爆炸加工方法。在本文中,对爆炸压焊-扩散烧结法的基本工艺流程进行了介绍,对还原烧结、爆炸压焊、扩散烧结这三方面的基本原理进行了详细阐述。在还原烧
学位
联轴器是连接旋转机械中主动装置与从动装置,从而传递扭矩的关键部件。在众多种类的联轴器当中,航空渐开线花键副凭借其优异的力学性能,在航空发动机的大扭矩传递和高精度装配的复杂载荷工况下表现尤为出色,因此在航空发动机领域具有非常广泛的应用。航空花键副的性能是决定航空器传动系统是否安全可靠的关键,过载会影响航空花键副的寿命,甚至可以直接造成航空花键副的断裂失效,进而对整个航空传动系统造成威胁。因此确定航空
学位
拓扑优化因能够帮助设计人员获得新颖的设计结果,已成为航空航天、交通运输等邻域中的关键设计技术。然而实际工业生产中,由于结构复杂、精细化程度高,且各个部件之间的特征尺寸差异较大,加之对于结构响应分析的精度及设计分辨率往往有较高的要求,有可能导致较大计算规模,给优化问题的可求解性带来一定挑战。目前,冗长的设计周期及高额的计算耗费已成为制约拓扑优化应用的重要因素之一。传统的拓扑优化方法大多使用固定欧拉网
学位
随着居民汽车拥有量大幅上升,交通事故也逐渐增加,因而汽车安全问题越来越受到关注。金属薄壁结构的吸能盒作为一种常用的吸能装置,广泛用于汽车的设计中。其原理为在汽车碰撞时吸能盒会发生塑性褶皱变形,从而吸收大量碰撞能量。目前,常用吸能盒的制作方式为预制初始形状、压痕开孔或附加挡板结构等。这些吸能盒确实可达到能量吸收的效果。然而,上述制作方式在一定程度上会改变结构的外观和完整性,降低整体强度以及增加加工工
学位
结构安定分析是结构设计和完整性分析的一个重要问题。为了提高结构的承载能力,应允许结构进入塑性,这就要考虑结构的安定性分析。虽然学者们经过多年的研究,已经发展了多种基于经典安定性分析理论的安定性分析方法。但这些方法仍存在计算效率较低,不能应用于大规模工程结构等问题,本文提出并发展了一种将原对偶本征应力驱动算法(PEM)和基降阶法结合的高效安定性分析数值方法,主要内容如下:首先介绍了经典安定理论及安定
学位
国家和社会的需要引导着工程建设的发展方向,21世纪将由地面空间的繁荣昌盛转化为地下空间的利用与高速发展。随着地铁基坑开挖的深度不断增加,开挖面临的地质条件也更加恶劣,开挖到岩石层的基坑工程大多采用了爆破施工。岩石爆破不可避免地会对周围环境产生一定的影响,因此在工程中,对于爆破产生的冲击波、飞散物等对建筑结构产生的危害必须严格控制。微差爆破又称为毫秒爆破,孔间毫秒延时间隔的长短是影响微差爆破效果的重
学位
先进复合材料作为主承力结构应用于大型客机机身已成为今年来的发展趋势。复合材料加筋壁板作为复合材料应用在飞机上的典型结构之一,研究其稳定性和承载能力对于飞机飞行使用安全有十分重要的意义。目前预测加筋板的承载能力的手段通常为有限元方法和工程计算方法。有限元方法能预测加筋板后屈曲路径与失效状态,但计算成本高、耗时长,工程计算方法效率高但精度低。为方便设计人员在设计初期快速预测加筋板承载能力和优化结构,论
学位
软物质材料是由高分子聚合物与溶液分子所组成的混合弹性体,在生产生活中随处可见,如花瓣、水果、生物组织器官等。软物质材料具有多种优良特性,在工程上被广泛应用,而软物质器件的断裂破坏威胁着人们的生命财产安全。因此,软材料的断裂失效问题受到国内外学者的广泛关注。软物质材料的断裂破坏不遵循线弹性、小变形等假设,使用传统方法对软物质的断裂破坏研究受到很大限制。近场动力学理论(Peridynamics,PD)
学位