斜轴式太赫兹天线近场全息测量研究

来源 :中国科学技术大学 | 被引量 : 0次 | 上传用户:feifeiml
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
太赫兹波因其在研究宇宙微波背景辐射,星际尘埃与介质以及精细分原子谱线方面的优势,在天文学研究领域具有不可替代的重要作用。但地球大气对太赫兹波的强烈吸收将优良的太赫兹大气窗口限制到地面上少有的高海拔和极低温的干燥区域。在苛刻的台址条件下实现太赫兹望远镜高达微米量级的面形精度要求是一项具有重大挑战的关键技术。近场射电全息具有测量精度高,便捷高效的优势,是毫米波和亚毫米波射电望远镜最为常用的面形测量方法之一。斜轴式的机架结构能够更好地适应极端台址环境并为望远镜的整体机构提供保护。然而斜轴式太赫兹天线特殊的转动机制会在近场全息测量过程中引入额外的误差因素。为了实现太赫兹天线所需的微米级面形测量精度,需要针对斜轴天线开展高精度测量理论和误差修正方法研究。基于上述背景,本文开展了斜轴式太赫兹天线的近场全息测量研究,主要研究内容以及创新点包括:1.采用了高精度的近场—口面场积分变换,提出并采用了三维空间旋转矩阵的矢量方法对附加光程和视差效应进行修正;2.详细分析了斜轴式天线的波束自旋制造成的非均匀近场采样和全息系统的极化失配问题,推导了极化失配功率损失和相位误差的计算公式;3.在W波段在设计了±64°角度范围内边缘锥削小于-6 dB的宽波束主焦馈源,并为其相位特性的准确表征搭建了一套远场波束测量系统;4.分别进行了主焦式和卡焦式的近场全息测量实验,系统重复测量精度优于2.0 μm RMS,近场全息和摄影测量方法对同一天线的面形测量结果一致性良好,利用全息测量方法成功地实现了对实验天线的面形测量与优化调整。本论文的研究成果有望在南极5米太赫兹望远镜高精度面形测量中获得直接应用,并为未来更大口径的毫米波和亚毫米波望远镜的建设储备关键技术基础。
其他文献
哨声波是地球内磁层中广泛存在、十分重要的电磁波动。哨声波在磁层高密度区域如等离子体层一般呈现为非相干的嘶声波,而在等离子体层顶外常呈现为相干的合声波。合声波通常是由分立的单元组成,单个合声波单元常呈现上升调或下降调结构。哨声波是辐射带中高能电子通量增加的主要贡献者,它能够通过局地随机加速,在几小时到一天时间内将大量百keV的能量电子加速到相对论电子,在辐射带电子动力学演化中起着至关重要的作用。人们
地球内部的绝大多数直接信息来自于地震学观测,利用不同温压条件下的矿物弹性性质可以使我们结合已有的波速信息对地球内部物质组成进行推测,因此高压实验所提供的矿物密度、弹性模量等物理性质随地球深度变化的趋势对地球深部科学研究具有重要意义。地幔中的MgO-Al2O3-SiO2-H2O(MASH)体系内矿物对地幔矿物的弹性性质产生明显影响,广泛参与地球内部的不均一性、波速异常等,具有重要的地球物理学意义。本
采用固相萃取-液相色谱-三重四极杆串联质谱(SPE-LC-MS/MS)技术,建立了养殖废水中17种氟喹诺酮类抗生素(FQs)的测定方法。水样在采用固相萃取法富集前,先用 0.45 μm 的聚四氟乙烯滤膜过滤,而后加入5%甲醇(体积比),用盐酸溶液将水样pH调节至2.0±0.5,经固相萃取柱富集,最后用9 mL 0.1%甲酸甲醇洗脱。以C18柱为分离柱,0.1%甲酸-5mmol·L-1 甲酸铵水溶液
选取中国其中的31省市PPP项目面板数据,描述性分析发现2016年-2019年PPP行业集中于市政工程、交通运输、生态建设、环境保护、片区开发及旅游,社会保障、林业、农业、能源及科技难以吸引社会资本关注;运营模式上政府偏好社会公共基础项目所有权控制,回报机制以政府补助和付费方式为主;借助ArcGIS与GeoDa软件可视化呈现2016-2019年PPP西部地区项目数下降,东、中部地区项目执行率高;对
川滇地区位于印度板块与欧亚板块碰撞带的东侧,是我国地震最活跃、地震灾害最严重的区域之一,是地震学研究的重点区域。本文应用压缩感知技术、背景噪声监测技术以及机器学习技术在地震数据处理和地震监测方面利用川滇地区的地震数据进行探索。在数据处理方面,我们利用机器学习技术筛选出可靠的分析数据。随着地震数据量变得越来越庞大,人工筛选变得耗时低效。我们利用机器学习技术代替人工完成这项费时耗力的工作。我们以地动分
亚暴爆发被认为是改变磁层和电离层,特别是近地磁尾中磁场能量和等离子体约束的基本过程。近30多年以来,不断有研究者提出气球模不稳定性可能是近地磁尾电流中断和亚暴爆发的触发机制。现在尚不清楚气球模不稳定性是引起亚暴爆发的主导因素还是仅起到部分作用。大多数研究者们在检验亚暴爆发的过程时都已经接受,这一区域的理想磁流体气球模可以是线性不稳定的,而近期研究结果表明动理学效应会显著影响气球模的稳定阈值。然而,
地震波速各向异性是研究地球内部结构、动力学活动、应力状态的一个重要手段,横波分裂则可以计算出各向异性的数值特征,包括快轴方向和慢波延迟时间。利用不同震相可以研究地球不同圈层的横波分裂特征。例如直达S波可以用来研究地壳各向异性,这可以反映地壳的结构和应力状态。SKS和SKKS震相则可以用来研究上地幔各向异,这在某种程度上可以反映上地幔的结构和板块运动等动力学特征。利用SKS和SKKS震相横波分裂参数
硅(Si)是地壳和地幔中最重要的元素之一,作为Si-O四面体的核心组分,参与着硅酸盐地球(BSE)中几乎所有的地球化学过程。前人的研究结果表明,很多地质过程都会导致Si同位素的分馏,因此Si同位素在包括高温和低温在内的不同地球化学领域都已经得到了广泛的应用。在这篇论文中我们利用Si同位素作为工具,分别对火山岩形成、俯冲带变质流体演化以及玄武岩风化等过程进行了研究。Si同位素分析方法是利用该同位素体
多接收电感耦合等离子体质谱(MC-ICP-MS)的发展大大提高了锂(Li)同位素的分析精度,使得Li同位素逐渐被应用于各种地质研究中。Li是最轻的金属元素,有两个稳定同位素6Li(7.6%)和7Li(92.4%),两个同位素间较大的相对质量差(17%)和扩散速率差(3-5%),使得各种地质过程中可以产生显著的Li同位素分馏(高达80‰)。目前已有大量关于各地质储库Li同位素组成特征的研究,尤其是地
中高层(20 km以上)大气区域空气非常稀薄,其中的物理、化学和动力学过程非常复杂,是日地空间物理研究中的重点区域。其中中间层顶和低热层(MLT)区域存在外星物质沉积产生的金属原子或离子层,高度范围80-105 km。在众多金属原子中,钠原子具有相对较高的粒子浓度和寿命,其后向散射截面也较大,因此成为了很好的中高层大气活动示踪物。发展高时空分辨率、高信噪比和高稳定性的中高层大气观测手段可以加深对该