多酚修饰碳纤维/环氧树脂复合材料的制备及性能研究

来源 :长春工业大学 | 被引量 : 0次 | 上传用户:flyballball
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
碳纤维具有较高的使用温度、高强度和刚度,并且重量较轻。其被广泛用作先进聚合物复合材料的增强体。但是,由于碳纤维在制造过程中要经历碳化或石墨化等工艺,导致其表面稳定、惰性,因此难以和基体之间形成牢固的物理/化学相互结合作用。然而,由于碳纤维增强聚合物复合材料的力学性能很大程度上依赖于碳纤维与聚合物基体的粘结质量。不良的界面结合会极大地限制复合材料在高性能领域的应用。需要通过碳纤维表面处理来达到提高复合材料界面性能的目的。碳纤维的表面处理通常是通过在纤维表面引入化学官能团或纳米粒子来实现惰性碳纤维表面的活化的。当前,针对碳纤维表面处理的多种多样的研究已经展开,但多数方法存在环境污染、成本高、工艺复杂、对纤维本身有损伤等各种不足。为了顺应当今环保、可持续的发展理念,碳纤维表面处理应当朝着低成本、可持续且环境友好的方向研究。本文围绕改善碳纤维和树脂基体之间界面结合的中心思想,以贻贝黏附蛋白为启发,在不损伤纤维本身强度的前提下,采用低成本、环保、温和的方法处理碳纤维。本文的主要研究内容为:(1)从贻贝黏附蛋白中得到灵感,结合多巴胺自聚的反应机理,以邻苯二酚和聚乙烯亚胺为原料,通过迈克尔加成或希夫碱反应,在碳纤维表面生成一种具有良好黏附能力的改性涂层。通过TGA、FTIR、拉曼光谱、XPS、动态接触角对改性前后的碳纤维进行了表征,证明了邻苯二酚-聚乙烯亚胺涂层成功涂覆到纤维表面。通过控制邻苯二酚和聚乙烯亚胺的比例,得到最佳的改性效果。紫外-可见光谱、SEM证明了当邻苯二酚和聚乙烯亚胺的比例为1:0.5时,纤维表面的涂层最均匀。界面及力学性能测试结果表明,邻苯二酚-聚乙烯亚胺的质量比为1:0.5时,其处理的碳纤维/环氧树脂复合材料界面性能达到最佳,其界面剪切强度为75.2 MPa,层间剪切强度为80.1 MPa,横向拉伸强度为32.1 MPa,弯曲强度为976.4 MPa;与未处理的碳纤维复合材料相比分别提高了73.7%,51.7%,86.6%,51.9%。通过SEM查看复合材料断面形貌,邻苯二酚-聚乙烯亚胺处理后的碳纤维/环氧树脂界面结合紧密,复合材料破坏形式由界面破坏转变为内聚破坏。(2)从多巴胺自聚得到启发,以低成本生物基原料单宁酸和氨丙基三乙氧基硅烷为原料,通过迈克尔加成或希夫碱反应共聚,在碳纤维表面生成一种具有良好黏附能力的改性涂层。研究了单宁酸和氨丙基三乙氧基硅烷共聚对碳纤维复合材料界面性能的良性作用。通过SEM、TGA、FTIR、拉曼光谱、XPS、动态接触角等对改性前后的碳纤维进行了探究,证明了单宁酸-氨丙基三乙氧基硅烷成功修饰到了碳纤维表面。界面及力学性能测试结果表明,单宁酸-氨丙基三乙氧基硅烷共沉积处理碳纤维/环氧树脂复合材料界面性能明显提高,其界面剪切强度为73.5 MPa,层间剪切强度为80.2 MPa,横向拉伸强度为27.9 MPa,弯曲强度为1028.1 MPa;与未处理的碳纤维复合材料相比分别提高了71.3%,59.9%,58.5%,33.2%。通过SEM对复合材料断面进行分析,单宁酸-氨丙基三乙氧基硅烷处理后的碳纤维与环氧树脂间的界面结合变好,复合材料失效形式由界面破坏转变为内聚破坏。(3)由聚多巴胺的聚合黏附受到启发,根据多巴胺中的邻苯酚羟基和氨基在自聚过程中能发生迈克尔加成或希夫碱反应,选取低成本生物基的没食子酸为邻苯酚来源原料,明胶为氨基来源原料,在类似多巴胺自聚的条件下反应,生成一种具有极强黏附能力的共聚物包覆在碳纤维表面,以活化碳纤维表面,促进树脂在纤维上的润湿,增加纤维-树脂间的相互作用,从而提高复合材料的界面性能。通过SEM、TGA、FTIR、拉曼光谱、XPS、动态接触角等对改性前后的碳纤维进行了表征,证明了没食子酸-明胶共聚物修饰到了碳纤维表面。没食子酸-明胶共沉积处理碳纤维环氧树脂复合材料界面性能明显提高,其界面剪切强度为85.6 MPa,层间剪切强度为82.6 MPa,弯曲强度为1223.7 MPa;与未处理的碳纤维复合材料相比分别提高了78.7%,56.4%,57.4%。没食子酸-明胶处理后的碳纤维与环氧树脂间的界面结合变得紧密,树脂与纤维间没有出现分离,复合材料的失效形式由界面裂开转变为内聚损坏。
其他文献
信息技术的发展极大地促进了人们对于位置服务的需求。近年来,Wi-Fi局域网的广泛覆盖以及智能终端设备的普及,为室内定位提供了高可用的基础设施。Wi-Fi指纹定位技术因其简单有效的特性成为室内定位的主流技术之一,广泛地应用于工业生产、社会生活、商业营销等多个领域。在信息数字化与共享的时代,大多数建筑物内的Wi-Fi接入点(Access Point,AP)分布都较为密集,在提高定位精度的同时也带来了一
影子银行体系是游离于银行监管体系之外主要从事与传统商业银行合作业务的实体,逃离监管以及高杠杆特性使得影子银行体系存在风险隐患,又由于金融市场一体化以及金融机构混业
基于溶剂挥发诱导自组装(EISA)过程制备的有序介孔氧化铝材料(OMA),因其合成过程简便、材料组织结构优异,同时有希望实现大分子的高效转化,成为当今国际上石油化工领域的研究热点之一。研究表明,在EISA过程中引入适量的杂原子可有效调变有序介孔氧化铝的物理化学性质。本论文基于EISA机理采用一步法合成了氧化铜-氧化铝基复合氧化物及氧化锆-氧化铝基复合氧化物,借助X射线衍射(XRD)、N_2吸附-脱
荧光传感技术已经应用在生命科学、能源、食品安全等众多领域。随着社会信息化、智能化的发展,人们对荧光传感的灵敏度要求越来越高。但是,受限于已有的理论知识以及实验制备条件等因素,荧光物质的量子效率、发光强度仍然很低,难以满足人们对荧光传感的快速发展需求。近几十年,随着微纳光电子技术的发展,越来越多的科研工作者利用微纳光学结构去调控荧光物质的发光特性,而且取得了一定的成果。但是,现在所提出的微纳光学结构
同时定位与建图(Simultaneous Localization and Mapping,SLAM)是智能移动机器人导航领域的一个重要分支,其中基于视觉的SLAM正是该领域的一个研究热点。在诸如井下、隧道、管道中等复杂环境下,由于低照度,纹理不清晰,模糊和镜面反射等问题,使用传统视觉SLAM系统难以提取图像特征并生成三维地图。为解决低照度环境三维地图构建问题,本文从以下三个创新点开展研究:(1)
碳纤维增强树脂基复合材料由于质轻、高强等优良特性在军用、航天及汽车领域获得大量应用。随着科技的不断进步与社会需求的持续增长,对碳纤维复合材料提出了更高的要求。众
对于有机场效应晶体管(OFETs)气体传感器,导电沟道通常集中在有机半导体(OSCs)层底部的几个分子层内,靠近OSCs和电介质之间的界面。因此,传统OFETs气体传感器受到平面OSCs层结构
金属有机骨架材料(Metal-Organic Frameworks,MOFs)是由金属离子或团簇与有机配体通过配位作用自组装形成的一类新型晶态多孔材料,基于高比表面积、高孔隙率及易化学修饰等特性
随着能源危机和环境污染的加剧,发展清洁能源变的尤为重要。氢能作为绿色能源,被认为是化石能源的最有效替代能源之一。而寻求有效的氢气储存材料,以实现氢能安全和高效的储
诱导多能性干细胞(induced pluripotent stem cell,iPSC)在再生医学、体外疾病模拟和药物筛选等领域都有很好的应用前景,然而重编程效率低的问题严重阻碍了iPS细胞的广泛应用