论文部分内容阅读
本文以黔西-滇东多煤层发育区中、高阶煤样为研究对象,利用土城和老厂先导区的18件煤样,运用扫描电镜、高压压汞、低温液氮、二氧化碳吸附、高压等温吸附和激光拉曼等现代测试手段,对煤样孔裂隙分布和非均质性特征进行精细表征。同时利用覆压核磁和覆压渗透率测试技术分析了孔裂隙应力敏感性,揭示了中高阶煤样吸附孔、渗流孔和裂隙应力应变特征。并利用变体积压缩系数,构建了应力作用下的渗透率动态变化模型。此外,通过物理模拟实验揭示了中高阶煤甲烷吸附、自然解吸、定压解吸和气驱水过程中吸附态甲烷和游离态甲烷的动态变化过程。综合上述成果,利用数值模拟手段对典型煤层气井开展多层合采模拟研究,探讨合采过程中孔渗动态及合层开采的影响因素。取得如下主要成果。
(1)根据2~100nm吸附孔特征,利用Ro,max值将研究区样品划分为A、B和C型。中阶煤样为A型,以半开放孔为主,优势孔径为10~50nm。高阶煤样品包括B和C型。B型样品中发育墨水瓶状吸附孔,优势孔径为2~10nm。C型样品吸附孔形态变化较大,为前两类样品的过渡阶段。A型样品中吸附孔体积非均质性最强,而比表面积非均质性弱于B和C型。随着煤变质程度的增高,0.4~2.0nm孔径的微孔分布形态逐渐由A型的多峰态变化为C型的三峰态和B型的双峰态。该部分微孔体积非均质性和表面非均质性具有良好的一致性。不同于吸附孔,所有样品渗流孔多以半开放孔为主。其中,A型样品中渗流孔最为发育,且对应的渗流孔体积非均质性强于其他两类型。
(2)应力作用下,中高阶煤样孔隙和裂隙的孔渗动态变化具有明显差异。同一煤样的孔隙和裂隙体积均随应力增大呈指数下降,且渗流孔和裂隙的应力敏感性强于吸附孔。随煤变质程度和压实程度增高,高阶煤样吸附孔大量发育,导致应力敏感性低于中阶煤样,但仍表现为渗流孔应力敏感性强于吸附孔的特征。同时,应力作用后,同一样品吸附孔非均质性变化大于渗流孔和裂隙。且应力变化对孔裂隙压缩系数和非均质性的影响具有阶段性。即低压阶段,随应力增加孔裂隙压缩系数和非均质性变化明显。高压阶段,两者逐渐趋于稳定。
(3)煤样吸附态甲烷和游离态甲烷的吸附解吸过程具有显著差异。吸附过程中,吸附态和游离态甲烷数量与甲烷注入压力分别满足朗格缪尔方程和线性关系。相同甲烷注入压力下,吸附态甲烷数量在前期呈线性增加,后期以对数形式增加。游离态甲烷吸附数量随注入时间呈单调线性增加,且饱和时间远小于吸附态甲烷。自然解吸过程中,所有样品吸附态甲烷数量变化过程基本一致,即分为前期的快速解吸和后期的缓慢解吸阶段。同时,由于中阶煤样的渗流孔发育,初始游离态甲烷含量较高,导致解吸过程中游离态甲烷变化速率高于高阶煤。此外,降压梯度与煤中甲烷解吸量具有负相关关系,即逐级降压过程可明显提高煤样中吸附态甲烷解吸量。
(4)合采过程中层间干扰主要发生在排采前期,排采后期逐渐减弱至消失。渗透率、孔隙度和储层压力是影响合层排采的主要因素,即孔渗特征及其动态变化是影响合采阶段的排水、降压和产气过程的因素之一。改进的渗透率模型表明较高的体积压缩系数使本层渗透率下降幅度变大,储层压降漏斗难以扩展,对本层最大和平均产气速率具有抑制作用。且本层渗透率的快速下降导致邻近层产出水量增加,储层压降范围变大,邻近层最大和平均产气速率均明显增加。同时,存在临界体积压缩系数,该临界值下的储层渗透率变化对合采产能影响很小,现有样品表明该值多对应于样品中的吸附孔。因此,仅考虑渗流孔和裂隙压缩空间的变体积压缩系数渗透率动态模型更能真实反映排采过程中应力敏感性引起的孔渗变化过程。
(1)根据2~100nm吸附孔特征,利用Ro,max值将研究区样品划分为A、B和C型。中阶煤样为A型,以半开放孔为主,优势孔径为10~50nm。高阶煤样品包括B和C型。B型样品中发育墨水瓶状吸附孔,优势孔径为2~10nm。C型样品吸附孔形态变化较大,为前两类样品的过渡阶段。A型样品中吸附孔体积非均质性最强,而比表面积非均质性弱于B和C型。随着煤变质程度的增高,0.4~2.0nm孔径的微孔分布形态逐渐由A型的多峰态变化为C型的三峰态和B型的双峰态。该部分微孔体积非均质性和表面非均质性具有良好的一致性。不同于吸附孔,所有样品渗流孔多以半开放孔为主。其中,A型样品中渗流孔最为发育,且对应的渗流孔体积非均质性强于其他两类型。
(2)应力作用下,中高阶煤样孔隙和裂隙的孔渗动态变化具有明显差异。同一煤样的孔隙和裂隙体积均随应力增大呈指数下降,且渗流孔和裂隙的应力敏感性强于吸附孔。随煤变质程度和压实程度增高,高阶煤样吸附孔大量发育,导致应力敏感性低于中阶煤样,但仍表现为渗流孔应力敏感性强于吸附孔的特征。同时,应力作用后,同一样品吸附孔非均质性变化大于渗流孔和裂隙。且应力变化对孔裂隙压缩系数和非均质性的影响具有阶段性。即低压阶段,随应力增加孔裂隙压缩系数和非均质性变化明显。高压阶段,两者逐渐趋于稳定。
(3)煤样吸附态甲烷和游离态甲烷的吸附解吸过程具有显著差异。吸附过程中,吸附态和游离态甲烷数量与甲烷注入压力分别满足朗格缪尔方程和线性关系。相同甲烷注入压力下,吸附态甲烷数量在前期呈线性增加,后期以对数形式增加。游离态甲烷吸附数量随注入时间呈单调线性增加,且饱和时间远小于吸附态甲烷。自然解吸过程中,所有样品吸附态甲烷数量变化过程基本一致,即分为前期的快速解吸和后期的缓慢解吸阶段。同时,由于中阶煤样的渗流孔发育,初始游离态甲烷含量较高,导致解吸过程中游离态甲烷变化速率高于高阶煤。此外,降压梯度与煤中甲烷解吸量具有负相关关系,即逐级降压过程可明显提高煤样中吸附态甲烷解吸量。
(4)合采过程中层间干扰主要发生在排采前期,排采后期逐渐减弱至消失。渗透率、孔隙度和储层压力是影响合层排采的主要因素,即孔渗特征及其动态变化是影响合采阶段的排水、降压和产气过程的因素之一。改进的渗透率模型表明较高的体积压缩系数使本层渗透率下降幅度变大,储层压降漏斗难以扩展,对本层最大和平均产气速率具有抑制作用。且本层渗透率的快速下降导致邻近层产出水量增加,储层压降范围变大,邻近层最大和平均产气速率均明显增加。同时,存在临界体积压缩系数,该临界值下的储层渗透率变化对合采产能影响很小,现有样品表明该值多对应于样品中的吸附孔。因此,仅考虑渗流孔和裂隙压缩空间的变体积压缩系数渗透率动态模型更能真实反映排采过程中应力敏感性引起的孔渗变化过程。