基于于眼球追踪的视觉深度提取方法研究

来源 :杭州电子科技大学 | 被引量 : 0次 | 上传用户:tangtieming1983
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
眼球追踪在人机交互、医学检查、心理测试领域有着广泛的应用,近年来也备受国内外学者的关注。目前大部分相关研究工作主要集中在针对固定距离内的视线方向获取,且多为近距离视线跟踪。视觉深度是人眼所注视目标物与人眼的实际距离。获取视觉深度信息在自动变焦眼镜等头戴式装置以及眼控交互技术中的人眼意图识别领域有重要应用意义。如在自动变焦眼镜中通过获取人眼实际注视距离,自动控制眼镜光焦度,使人眼能够获取任意距离的清晰视觉同时具有良好的视觉舒适度。本文建立了根据双眼注视方向计算视觉深度的理论模型。每个眼球的视线方向通过瞳孔-角膜反射法获得,在原有方法的基础上进行改进:1)结合人眼图像信息和眼球三维结构计算注视方向;2)使用改进的光路反射模型,提高计算视觉深度的准确率。通过在每个眼球周围布置了三个红外光源和两个微型摄像头,红外光源会在人眼的角膜表面形成反射像,光源反射点相对于瞳孔中心的位置会随人眼转动发生变化。通过处理相机获取的人眼图像,提取瞳孔中心与光源反射点之间的距离计算出视线方向,代入模型计算出视觉深度。搭建了基于模型眼的实验测试装置并开展了实际人眼注视状态下视觉深度信息的测量。实验结果显示,使用模型眼实验装置采集数据时,本文计算方法对于1145.4 mm以内视觉深度的平均提取误差率为11.98%,实际佩戴测试中可以对200-1000 mm内的视觉深度实现有效提取,平均误差率基本控制在18.19%以内,可以用于自动变焦眼镜中实时获取人眼视觉深度信息从而自动控制镜片光焦度。
其他文献
Massive MIMO(Massive Multiple-Input Multiple-Output)具有抗干扰能力强、频谱效率高、系统容量高等优势。因毫米波波长短,能在较小的区域内部署大量天线,所以两者的结合具有极大的优势。与此同时,混合Massive MIMO结构因能显著降低系统的射频链数目,从而可以降低系统构造的硬件成本和功耗,因此受到了广泛的关注。然而,相比于传统的阵列天线结构,混合Ma
学位
针对现有工业领域存在的管道结垢清理成本高,除垢效果不易观察等问题,本文研究了一种结合红外检测技术和超声波清洗技术的在线除垢系统。基于红外阵列传感器实现管道表面的实时温度监测,并结合温度变化,动态调整超声驱动电源的功率,实现管道的在线超声除垢。本论文的主要研究内容包括:首先,设计完成了应用于管道除垢的超声波电源:其工作频率21.5k Hz左右,电源最大输出功率500W。频率追踪方案基于团队设计的HZ
学位
在新冠疫情期间(COVID-19),为了有效阻止疫情扩散,在中国几乎人人都佩戴口罩,现在人们出门佩戴口罩已经成为一种共识。佩戴口罩却对日常的人脸识别带来了极大的挑战,因此如何消除面部遮挡对人脸识别产生的影响,是亟待解决的问题。目前针对无遮挡条件下的人脸识别技术已经相当成熟,但是在脸部存在遮挡的情况下,识别的性能会大大受到影响,因此如何解决遮挡问题对人脸识别的影响至关重要,面对局部遮挡的人脸识别也是
学位
回音壁模式光学谐振腔具有高品质因数、小模式体积等优势,可以极大增强腔内光场与物质之间的相互作用。基于回音壁模式光学谐振腔的磁场传感器可以快速的探测磁场信号,具有抗电磁干扰、宽频带、低功耗、室温工作等优点。本文在现有的回音壁模式光学谐振腔的研究基础上,采用磁致伸缩材料(FeGa和Terfenol-D粉末)与毛细管构成的回音壁模式光学谐振腔构建了磁场传感器,实现了交变磁场和直流磁场探测。本论文主要完成
学位
宽带雷达通过主动探测可获取反映目标对象结构信息的高分辨距离像(HRRP)。由于HRRP中不仅蕴含了充裕的目标结构信息,而且具备易处理、数据量小等特点,非常适用于雷达目标识别场景中,因此成为了雷达识别领域的热门研究对象。本文分析了过去的HRRP识别方法在非合作目标场景下存在的不足,并基于此提出了一种基于自监督胶囊网络的非合作目标雷达一维距离像的识别方法,具体内容如下:(1)首先分析了HRRP受雷达和
学位
压电材料作为一种重要的功能材料,已经被普遍地应用于工业生产、核能、航空航天和石油勘探等领域。随着科技的发展,各种领域和场合对于压电材料性能的要求变得更加苛刻。以核能领域为例,通常需要压电传感器在高于500℃的高温环境下持续地监测核反应堆内部组件的工作状态。采用传统的PZT压电材料已经很难应对这些领域的特殊需求,因此,研究出一种可以耐受高温高频的新型压电材料,具有重要的现实意义。铋层状结构(BLSF
学位
半透明有机太阳能电池在建筑光伏一体化、汽车及可穿戴电子设备等领域具有巨大的应用前景。目前,实现高性能半透明有机太阳能电池的难点在于保持高平均可见光透射率的同时拥有较高的光电转换效率。理想的半透明有机太阳能电池活性层应主要吸收近红外区域的光,而对可见光(370 nm~740 nm)保持较高的透射。因此,本论文基于在近红外区域具有较强吸收的PTB7-Th:IEICO-4F异质结体系构建半透明有机太阳能
学位
二氧化硫(SO2)主要由含硫物质的燃烧和一些自然反应产生。SO2与空气中的水分子和氧分子反应得到H2SO4,形成酸雨。酸雨会危害水生生物的生存。此外,它也是一种有害气体,人类的耐受性浓度约为5 ppm,而长时间接触的SO2的浓度超过2 ppm,将会引起人类的严重疾病,如呼吸系统和心血管疾病以及肺癌,因此,开发能够有效检测低浓度SO2的气体传感器意义重大。二氧化锡(SnO2)是一种具有宽禁带(Eg=
学位
如今随着智能制造发展,传统制造业需要通过智能化的解决方案来实现产业升级,提高生产效率。缝纫机作为一个传统制造业已经有一百多年的历史,目前缝纫机系统普遍存在以下问题:不能及时同步设备运行参数和状态;对缝纫机设备故障识别不准确;整个缝纫机生产线工序分配不均衡等问题,极大地影响整个系统的工作效率。本文针对目前缝纫机系统存在的以上缺点,实现了基于物联网技术设计的一套缝纫机在线监测系统:用自主研发的智能网关
学位
机时(关机机时、待机机时、工作机时)可以有效反映出仪器使用率、闲置情况等信息,在大型科研仪器开放共享与绩效考核中扮演着重要的角色。然而,目前各单位、机构仪器的机时数据还停留在人工统计阶段,不仅繁琐低效且存在漏记、错记等问题,无法满足当下构建规范化、专业化、网络化的大型科研仪管理服务体系的需要。针对人工统计机时的方式不适用于当下大型科研仪器种类、数量众多的场景,本文设计并实现了一种大型科研仪器机时智
学位