飞秒激光烧蚀技术制备柔性金属透明电极材料

来源 :宁波大学 | 被引量 : 0次 | 上传用户:jsnjwh
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
柔性透明电极(Flexible Transparent Electrodes,FTEs)是一种新型的光电材料,具有较好的光电特性、强机械性、高热稳定性和高耐用性等特点,可用于穿戴设备、曲面太阳能电池、便携式加热器和智能窗口等多个领域,因此FTEs材料已经成为光电产业的重要组成部分之一。传统的氧化铟锡(Indium Tin Oxide,ITO)透明电极材料的脆性高、价格昂贵、热稳定性差、原料利用率低和有毒等缺点,不能满足未来光电器件的需求。因此,当前许多研究者和研究机构专家通过化学合成、物理喷涂、激光烧结、激光烧蚀等方法制备了基于金属网格、金属纳米线、碳纳米管和石墨烯等材料的新型FTEs。超短脉宽、超高峰值功率的飞秒脉冲激光因其较强的材料兼容性和“冷加工”优势,从众多加工方式中脱颖而出,成为制备FTEs的重要方式之一。目前,基于飞秒激光烧蚀技术制备金属FTEs的研究较为欠缺,并且飞秒激光与金属薄膜相互作用的理论研究尚未成熟。因此,研究飞秒激光烧蚀技术制备柔性透明金属铜网格电极的机理、特性和应用具有重要意义。本文首先讨论了FTEs的种类和制备方法,重点对激光烧蚀金属薄膜的动态演化过程进行了分析,为飞秒激光直接烧蚀金属薄膜的理论和实验研究奠定了基础。随后搭建了飞秒激光加工系统和飞秒激光整形系统。利用双温模型模拟了飞秒激光作用于铜薄膜表面的温度场,并通过实验计算得出铜薄膜的烧蚀阈值,以分析飞秒激光烧蚀铜薄膜方案的可行性。之后对制备的柔性透明铜网格电极进行了性能测试,测得在550 nm处可见光的透过率为91.8%,对应的方块电阻为15.1Ω/sq;在弯曲半径为6.5 mm的10000次弯曲拉伸循环试验中,电阻变化率仅为2%;500次黏附性测试电阻变化率小于5%;在4 V直流电压下,铜网格加热器的温度迅速升高并稳定在151.9℃;在80℃的加热温度下对FTEs进行开关循环测试,分析发现其可循环性比ITO材料更高;当弯曲角度在0°到90°之间变化,温度与初始值相比变化仅为2%。为解决单光束激光加工效率低和能量利用率低的缺点,研究了空间光调制器整形多光束飞秒激光加工的方法。空间光将达曼光栅相位全息图加载到空间光调制器上获得了多束能量均匀的高斯光束,将加工速度最高提升了25倍。同时,研究了空间光整形方形光束,进一步降低了金属覆盖率(最小为0.27)。最后,对新型铜网格FTEs进行了应用研究,使用加工后的样品制作了触摸屏面板、加热除雾器和隔热智能窗口。
其他文献
近年来,随着能源的需求及消耗不断增加,节能与环保受到各国的重视。其中电致变色器件由于在外电场的作用下对光热辐射具有可调节的特性,在智能窗、防眩光后视镜、车窗以及显示器等方面有着广泛的应用,成为国内外研究的热点。电致变色器件典型结构为透明导电层/电致变色层/电解质层/离子储存层/透明导电层。在上述结构中,离子存储层材料通常为氧化镍(Ni Ox),该材料具有阳极电致变色特性,在器件中可作为传统阴极电致
学位
超表面的外在手征是由超表面与斜入射光线共同构成引起的,与手征超表面具有相同的特性,如圆二色性和旋光性、不对称传输、负折射率等,从而引起了人们极大的研究热情。自然界的天然材料只具有相对较弱的圆二色性和旋光性,并且人们制造的一些超材料结构复杂,体积过大,不容易集成在纳米光学系统中。而这些具有外在手征特性的超表面,结构简单,可以通过改变入射角来调节电磁特性,具有比天然材料高几个数量级的电磁性质。目前,人
学位
随着现代通信网络及数据传输的飞速发展,现有的通信波段将很快用完,研究发展新的通信波段——U波段(1.66μm附近)迫在眉睫。拉曼光纤激光器具有结构简单、光束质量好、激射波长灵活可调且光转换效率高等优点,只要选用恰当的泵浦光源和非线性介质理论上就可以实现任意波长拉曼激光输出,这将为光纤通信系统提供新波长的光源。本论文的研究工作就是针对拉曼光纤激光器,对1.66μm连续拉曼光纤激光器进行了相关理论数值
学位
目前,毫米波雷达因其探测精度高、高分辨率、环境适应性好而被广泛应用于军用和民用的多个领域。天线是毫米波雷达中的重要系统组件,对于接收和发射电磁波信号具有关键性作用。随着毫米波雷达的快速发展,对于能够实现低剖面,高增益,低副瓣,窄波束,多波束的天线需求日益增多。另一方面,单脉冲天线经常被应用于探测目标方位,因此在毫米波雷达系统中也具有很高的研究价值。本文主要研究方向是毫米波平面高增益天线阵和单脉冲天
学位
2-6.5μm全光纤中红外超连续谱光源作为一种新型的激光光源,光谱覆盖重要的大气窗口,具有高亮度、高紧凑性以及热管理方便等优点,在军事和民用领域都有非常重要的价值。随着新型材料开发、特种光纤制备及高功率光纤激光等领域的不断发展,全光纤中红外超连续谱光源在输出功率、光谱宽度等方面取得了重大突破。近年来,已报道的基于氟化物光纤的中红外超连续谱光源稳定输出功率已达几十瓦。然而,受限于氟化物光纤材料的本征
学位
偏振光在理想的偏振光纤中传输时能够一直保持偏振态不变,而且偏振光纤可以有效地减小偏振模色散,从而提高偏振态调制系统的稳定性,这使得偏振光纤在航天、军事等一些需要使用偏振态调制系统的应用领域中具有广泛的适用性。目前石英光纤已经大量应用于各种偏振器件,氟化物光纤仅有椭圆芯保偏光纤工作在近红外区域,而在中远红外区域内关于偏振光纤的研究仍处于起步阶段,主要集中于对硫系光子晶体光纤的模拟仿真。其难点在于硫系
学位
相变存储器(PCM)已被公认为下一代最具前景的新型非易失性存储技术之一,因其有着较快的存储速度、较高的存储密度、可重复利用以及多值存储等诸多优势。PCM是利用相变材料在非晶态和晶态之间较大的电学性质差别来实现数据存储。相变材料的性质决定了PCM的性能,其性质优化是PCM研究的热门之一。目前,Ge-Te基及Sb-Te基相变材料因综合性能较平衡,是研究较多、发展快速的相变存储材料体系。实际应用中,Ge
学位
2μm大能量脉冲激光器在生物医学、材料加工、光通信和国防等领域具有广泛应用。特别地,全光纤化的2μm大能量脉冲激光器结构紧凑且稳定性好,已成为激光领域的重点研究对象。目前,2μm脉冲激光主要通过调Q技术和锁模技术来实现。在调Q技术中,基于低维纳米材料的被动调Q技术因其制备简便、成本较低受到广泛关注,但材料本身往往存在严重热累积效应,使得输出脉冲能量受限。本文采用Bi2Se3作为可饱和吸收体,通过腔
学位
随着移动通信技术和产业的高速发展,移动通信用户和通信数据量激增,用户对通信系统的性能要求也愈来愈高。目前,5G移动通信业务已经正式商用,但5G通信网络的尚未完整地覆盖全国各地,移动通信系统呈现出4G通信与5G通信共存的局面。5G通信系统为了保证通信具有低延时、高可靠、广接入等优良特点,采用多种新颖的通信技术,其中,Massive MIMO技术是5G通信采用的关键技术之一,该项技术对于通信系统中基站
学位
对于室内环境中的混合有害气体,传统的离子迁移谱、气相色谱和质子转移反应谱等检测手段虽然可以做到对其进行定量分析,但该类方法的设备昂贵、操作复杂。单一的传感器检测方法价格低廉,但难以达到定量识别的要求。而采用传感器阵列和模式识别算法相结合的电子鼻技术可以在简易、快捷的前提下实现对混合气体的定量识别。本文针对室内有害气体中的氨气(NH3),利用简易的原位聚合方法制备了石墨烯-聚苯胺/偏聚氟乙烯(GP-
学位