基于改进Cartographer的激光SLAM算法研究

来源 :武汉科技大学 | 被引量 : 0次 | 上传用户:hensun01
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
同时定位与地图构建(Simultaneous Localization and Mapping,SLAM)是移动机器人实现自主导航的关键技术。移动机器人的应用环境较为复杂,在特征密集的大场景环境中,SLAM算法的性能受到很大的影响。与基于滤波的SLAM算法相比,基于图优化的SLAM算法具有实时性更高,能够建立大场景的地图,累积误差更小等优点。但是经典的图优化SLAM算法在复杂环境中运用时,存在局部建图的估计精度低、参数调节工作量大等问题,严重影响实际应用。因此本文就如何提高SLAM算法定位与建图的精度进行研究,并给出算法参数的调整方法,这对促进SLAM算法的应用,推动移动机器人产业的发展具有重要的理论意义。具体研究内容如下:
  (1)针对Cartographer算法参数的数量多,参数之间互相影响,导致调节参数工作量大等问题,本文提出一种参数调整的方法。对Cartographer算法的参数进行分模块研究,分析各参数的设计原理以及取值范围。通过调节参数的值在标准数据集下运行算法,根据评价指标对运行结果进行分析,给出参数的合适取值以及调整方法。
  (2)针对Cartographer算法在多传感器数据处理中,存在点云中的离群点和噪声影响点云匹配的精度,以及位姿融合算法精度不高的问题,提出一种基于混合滤波算法和速度积分位姿融合的SI-Cartographer算法。首先,改进选点策略优化体素滤波算法的重采样过程,提高滤波效率。并引入半径滤波,提出一种混合滤波算法,以提高点云质量。然后,在融合观测位姿、里程计数据和惯性测量单元数据的算法中,引入速度积分改进位姿融合方法以提升点云匹配的准确性。最后,在使用数据集验证算法回环检测性能和定位精度的测试实验中,比较SI-Cartographer、Cartographer和A-LOAM三种算法。实验结果表明,与后两者算法相比,本文提出的SI-Cartographer算法构建的地图更精确、轨迹误差小。
  (3)搭建了一个能够进行实时定位和地图构建的室内移动机器人实验平台。对移动机器人的硬件系统和软件系统进行分析,并在实验平台上验证本文提出的参数调整方法和SI-Cartographer算法的可行性与有效性。
其他文献
对于基于高光谱图像的应用而言,在不降低性能的前提下,选择信息量大且具代表性的波段是大数据环境下一项具有挑战性的任务。波段选择是一种直接有效的降维方法,但是大部分方法忽略所选取波段的有序性与相关性,以及只根据波段排序选择所需的聚类中心数来构造波段子集。此外,对于许多波段选择方法来说,只考虑波段的冗余性会导致有价值的波段丢失。针对上述问题,本文首先研究了子空间划分策略,该策略基于相邻波段具有高冗余的特
目前,以三维激光扫描仪为代表的硬件系统研究相对完善,点云数据的后处理研究还有很大的不足。不论使用何种设备、何种方式采集到的点云数据,都或多或少的存在冗余点。除此之外,点云数据具有栅格性、海量性等特点,采集到的点云数据一般都是吉(GB)级别,甚至太(TB)级别,所以点云数据的存储和处理等操作对计算机硬件提出了很高要求,因此本文针对点云滤波与压缩中的关键技术进行研究并提出相应的改进将很有意义。本文将点
学位
在人工智能大数据的时代背景下,图像信息已经成为互联网信息交流主要媒介,所以对图像识别技术进行深入研究,具有十分重要的意义。传统的图像识别方法需要人工设计特征,在图像识别效率和识别准确率两方面已经无法满足人们的需求。深度学习方法摒弃了传统的人工提取特征的方式,可以自动的从数据集中进行学习,提高了图像识别的效率。生成对抗网络借鉴了博弈论思想,在模型中引入了对抗机制,因其强大的生成能力,备受广大研究学者
学位
随着计算机技术及人工智能的迅速发展,人体姿态识别被广泛应用于人机交互、游戏娱乐和生物特征识别等多个生活领域。但在实际研究中,因环境、背景、光照等问题导致最终的识别精度不高,Kinect获取的深度图像和骨架信息具有颜色无关性,对光照不敏感,克服了普通光学图像的缺点。因此本文采用Kinect2.0构建了实验所需的人体身份及姿态图像库,采集了彩色、深度以及骨架信息三种数据类型。提出了一种基于关键关节点坐
量子计算机的发展将带来严重的安全问题,传统的公钥密码体制会遭受巨大威胁。格密码是后量子时代最有发展前途的密码算法之一,与公钥密码学的研究热点数字签名相结合,以格上困难问题为归约困难问题的方式进行方案的设计,将具有重要的理论研究价值和意义。现已提出的基于格的数字签名方案存在种类较少、密钥长度较长的不足。鉴于此,本文从种类和密钥长度两方面着手,采用不同的底层算法,提出了两类签名方案,具体如下:(1)传
学位
近年来,随着光纤通信产业的快速发展以及技术突破,光纤激光传感器凭借高信噪比、高灵敏度,窄线宽的优势在水声、压强、加速度测量等领域得到了广泛应用。为了解决目前光纤激光传感解调系统成本高,速度慢的问题,本文从光纤激光传感技术理论与应用出发,结合纵模拍频解调和数字信号处理技术,提出一种基于FPGA的电子化、高速度的数字解调方案设计。搭建环形谐振腔多纵模光纤激光传感和自动温控平台进行应力传感测试,验证拍频
随着互联网技术的迅猛发展以及基于位置的应用需求不断增高,位置感知逐渐成为人们生活中必不可少的应用支撑,基于位置的服务(Location-based Services,LBS)也随之成为现代网络通信技术领域的重要研究方向。北斗卫星导航系统(Bei Dou Navigation Satellite System,BDS)、全球定位系统(Global Positioning System,GPS)等卫星
学位
时频分析是一种处理非平稳信号的重要方法,它能提供信号时域和频域的联合分布信息,清楚地描述信号频率随时间变化的关系。本文的研究对象为时频分析,针对传统时频分析方法的时频聚集性低和自适应差的问题,主要研究了自适应短时傅里叶变换算法和自适应时频同步压缩算法,并将其应用于解决跳频信号参数估计和多分量信号分离问题。首先,本文介绍了常见非平稳信号的数学模型及时频特性,用传统的时频分析方法对合成信号进行分析,并
数字语音的编码传输是整个数字化通信网中最重要、最基本的组成部分之一.2.4kb/s甚至更低速率的语音编码技术一直是语音编码中重要的研究课题.该文的第二章提出一种 新的2.4kb/s快速波形插值(FWI)算法和完整的算法实现.FWI算法对基本WI算法的分析和合 成算法进行全面的改进.在FWI中提出无对齐操作参数分析算法,使得算法中复杂度比重最 高的特征波形提取和分解的复杂度降低到原来的一半,从而使算
贝叶斯理论为非线性非高斯状态估计问题提供了一种基于概率分布形式的解决方案。粒子滤波是基于递推贝叶斯估计理论的一种序贯蒙特卡罗算法,可以有效地解决非线性非高斯问题,因此被广泛应用于视觉跟踪、目标定位、通信与信号处理等众多领域。  但是粒子滤波算法在递归计算过程中存在粒子权值退化、粒子多样性丧失、维度灾难、计算成本高等问题。针对标准粒子滤波算法存在的问题,本文提出了一种基于“新息误差”的粒子滤波算法,
学位