半极性(10(?)1)晶面GaN基蓝绿光LED外延结构的设计及其性能研究

来源 :太原理工大学 | 被引量 : 0次 | 上传用户:huweiboweb
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
GaN基发光二极管(LED)因具有节能环保的优点,已被广泛应用于照明和显示等领域。目前,商用GaN基LED均生长在极性(0001)晶面上,外延结构中强的极化电场引起了严重的量子限制斯塔克效应,进一步导致了效率骤降,特别是在绿光波段这一现象更加严重,限制了LED性能的进一步提升和其进一步的应用。与极性晶面相比,半极性晶面内的极化电场会明显减弱,效率骤降能得到明显改善。因此,研究半极性GaN基LED外延结构具有重要意义。本论文理论研究了半极性(10(?)1)晶面GaN基LED的极化电场,分析了不同外延结构的光电性能,优化了绿光LED的量子垒(QB)组分。主要研究内容和结果如下:(1)采用SiLENSe半导体模拟软件研究了极性(0001)晶面和半极性(10(?)1)晶面GaN基蓝光LED外延结构的光电性能。通过InGaN/GaN单量子阱模型分析了极化强度随晶面取向的变化关系,表明半极性(10(?)1)晶面InGaN量子阱(QW)中的静电场发生了反转。随后通过InGaN/GaN多量子阱模型详细研究了极性(0001)晶面和半极性(10(?)1)晶面GaN基蓝光LED外延结构的光电性能,结果表明InGaN QW中的静电场反转提高了QB的电子阻挡能力:与(0001)晶面相比,(10(?)1)晶面GaN QB的平均势垒高度提高了约63 meV,有效抑制了电子泄露。加之,由于半极性面极化有关的电场减小,电子阻挡层的电子阻挡势垒提高了166 meV,空穴注入势垒降低了120 meV,促进了有源区载流子的均匀分布,提高了辐射复合效率,缓解了效率骤降。(2)研究了(10(?)1)晶面绿光LED在不同位错密度、电子阻挡层以及量子阱厚度下的外延结构的光电性能。结果表明降低位错密度可以促进电子的横向扩散,降低开启电压,抑制非辐射复合;无电子阻挡层的结构虽会引起载流子泄露,但即使在大电流密度下也不会急剧降低器件性能,特别是内量子效率曲线与有电子阻挡层的常规结构几乎重合;对于无电子阻挡层的外延结构,随着阱厚的增加,阱中电场减小,垒中电场增加,阱厚太小,载流子泄露严重,阱厚太大,电子与空穴波函数重叠减小,不利于发生辐射复合。(3)研究了(10(?)1)晶面绿光LED外延结构的量子垒组成对其性能的影响,结果表明四元AlInGaN材料在降低阱垒界面极化电场上有很大优势,而且由于静电场反转提高了电子阻挡势垒,所以与InGaN晶格匹配的低Al摩尔分数的小带隙AlInGaN QB更能促进空穴在有源区的传输,实现载流子的匹配分布,进一步缓解效率骤降。
其他文献
NdFeB烧结磁体自1984年问世至今,以其卓越的室温磁性能,广泛应用于电动汽车、轨道交通、电子、医疗以及风能发电等高新技术领域。然而,普通烧结NdFeB三元磁体的矫顽力低、耐高温性能差,无法满足高温环境下的使用需求。因此,研究者期望通过改善磁体室温下的矫顽力以弥补其在高温下的不可逆磁通损失,进而提高烧结磁体的耐温性。本文采用晶间添加Tb80Fe20、Dy Hx、纳米Al/Zn O粉、Tb80Fe
学位
黑色金属材料因为强度高、韧性高和不错的耐腐蚀性能,被广泛应用于各行各业,其性能的优化一直是备受关注的课题研究。表面改性处理可以提升黑色金属的表面性能,使其应用更加广泛。等离子体氮化技术因其经济有效,发展迅速,在各种表面处理方法中备受称赞。等离子体氮化利用辉光放电产生等离子体,高速的氮正离子对工件表面进行轰击,将活性氮原子渗入材料表面。在这个过程中,渗入黑色金属材料中的氮与基体中的Fe等元素形成氮化
学位
利用X射线光电子能谱技术(XPS)和扫描电子显微镜(SEM)研究了芥酸酰胺在聚丙烯(PP)无纺布表面迁移过程中的元素和形貌特征变化,通过XPS结果中N1s窄谱峰中—NH2(398.5 eV)和—NH—(399.4 eV)的两种价态峰以及不同迁移浓度下的O1s窄谱峰和SEM观察到的层状形貌,成功揭示了迁出的芥酸酰胺分子逐层形成单层和多层结构的自组装行为。同时,利用接触角研究了芥酸酰胺迁移浓度对PP无
期刊
镁合金材料拥有超高的比刚度、比强度以及良好的电磁屏蔽特性等优势,在汽车行业领域、航空与航天领域及消费电子产业中获得了广泛使用。但是,因其是密排六方晶体结构,造成镁合金材料在常温下的成形性能较差,影响了镁合金材料的进一步使用。本课题的研究对象为具有强基面织构的1 mm厚的AZ31镁合金薄板,通过弯曲限宽矫直技术在镁合金薄板中预置{10(?)22}拉伸孪晶,弱化原始板材的强基面织构,提高镁合金薄板的力
学位
与传统合金不同,高熵合金包含众多组元数,反而倾向于形成单相固溶体结构,从而显示出良好的综合性能。而随着高熵合金独到的设计理念与卓越的机械性能,也引起了许多科研者的浓厚兴趣,其摩擦学行为也变成了热点课题。具有FCC结构的高熵合金塑性较好,但表面硬度低,局限了其使用范围。固体渗硼技术是一种提高材料表面性能的有效途径,并且操作简单、成本低廉。本文选择非等原子比、具有单相FCC结构的Fe40Mn20Cr2
学位
锚杆支护技术广泛应用在工程中,尤其在煤矿巷道支护中被广泛使用,是支护最有效的方式。随着煤矿开采深度的提升,煤炭行业需要在更深的矿井下进行作业。现有锚杆钢已难以满足煤炭行业发展的要求,急需研发强度更高的锚杆钢。本文主要针对现有锚杆钢强度较低的问题,从成分优化设计、控轧控冷工艺的改善以及析出相的调控等方面来进行研究。通过JMatpro设计了具有700 Mpa级超高强锚杆钢的合金成分,研究轧制温度、轧制
学位
中锰钢合金元素含量较低且具有优异的强塑积,因而被视为最具发展前景的第三代汽车用高强钢。本文制备了一种新型的含V热轧中锰钢,其成分为:Fe-10.2Mn-1.98Al-0.4C-0.61V(wt.%)。研究了不同热处理工艺下中锰钢的微观组织及力学性能的演变规律;分析了不同热处理工艺对中锰钢奥氏体稳定性、元素配分行为、以及强化机制的影响,为中锰钢的制备及发展提供了一定的理论指导。研究取得的主要结果如下
学位
传统塑料包装存在难降解以及原材料不可再生的问题,目前已经造成石化资源的巨大浪费和严重的生态环境污染。因此,天然可生物降解包装材料成为当前研究的热点。木聚糖(Xylan)是植物中半纤维素的主要成分,它具有生物相容性好、无毒和易降解等优点,是一种潜力巨大的可降解性生物资源,可应用于食品包装领域。但是,木聚糖的溶解性差导致其难于成膜,且其机械性能、抗菌性能弱也不能满足应用需求,因此需要对其改性或与其它材
学位
近二十年来,刺激响应聚合物取得了极大地进步,其应用从药物输送系统、组织工程、生物传感,人造肌肉到智能软体驱动。软体驱动器作为刺激响应聚合物材料的重要应用分支已取得了初步的成功,然而,在一定的外部刺激下将材料的响应能力转换为驱动力进而发生可逆形变绝非易事。聚(N-异丙基丙烯酰胺-丙烯酸-丙烯酰氧基二苯甲酮)[P(NIPAAm-AAc-ABP)]三元共聚物不仅具有温度、pH双响应性而且可通过UV光实现
学位
随着显示和照明技术的不断革新,具有发射光谱连续可调、窄线宽发光、光化学性质稳定、高荧光量子产率和可溶液工艺制备等优势的量子点(quantum dots,QDs)以及基于量子点有源层的量子点发光二极管(quantum dot light-emitting diodes,QLEDs)受到了学术界和工业界的广泛关注。但是,目前QLED器件仍然存在电子和空穴传输/注入不平衡等问题,这严重制约着QLED器件
学位