骨逆压电效应的实验研究

来源 :天津大学 | 被引量 : 0次 | 上传用户:avc66
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
骨的压电性的重要性在于骨内应力产生的电信号有可能影响骨细胞的生长。由于骨自身结构的复杂性,仅仅测量骨的正压电效应还不足以全面了解骨的压电效应的具体性质。近年来多种测量方法被应用于骨的力—电性质研究。本研究测量了牛骨薄梁试样的逆压电性弯曲变形的挠度。在牛胫骨骨干的部位取薄梁试样,在试样的两侧(厚度方向)用银导电胶制上电极,然后在两电极间加上电压(电场强度500~1500KV/M),发现梁会发生弯曲变形,即所谓逆压电效应,利用高放大倍数数字光学显微镜结合图像相关技术测量了梁自由端的挠度。确定这种弯曲变形的确是由逆压电效应引起的。定义实验中与电场平行的方向为X方向,与电场垂直的方向为Y方向。试样X方向的位移在加载电压前10分钟增幅较大,随着时间的增加,曲线趋于平缓。在电压卸载之后,一部分曲线出现负增长,一部分曲线斜率基本趋近于0。X方向的位移随时间的增大而增大。各个试样在Y的位移相对于自身平行于电场方向的位移均较小。且大部分Y方向的位移都随时间呈线性增加的趋势。Y方向位移都十分小,基本都在15个像素以内。可能Y方向的位移主要由系统误差引起,而Y方向在电压的作用下,自身不产生位移,或者只有非常小的位移。
其他文献
三十年来伶仃洋地形在自然条件和人类活动双重影响下不断地演变,而地形改变又影响了水动力特性。伶仃洋沿岸区域是重要的人类生活和经济发展的区域,对伶仃洋的地形演变规律及其
薄壳和厚壳分析是基于不同的理论,薄壳一般以乐甫薄壳理论为基础,忽略壳的横向剪切变形和挤压变形的影响,用薄壳理论分析厚壳会带来很大误差。厚壳分析一般采用Reissner理论为基
近年来世界范围内发生的很多大停电事故通常表现为连锁故障,为了在更高的水平上保证电网的安全可靠运行,加强对电网连锁故障的预测是非常重要的。而在预测分析时,一些不确定因素,如初始故障的位置、类型事先并不一定能以确定的方式给出,因而有必要引入概率的分析方法。本文按照连锁故障发生、发展的物理过程并结合各个阶段事件的概率特点建立了一种电网连锁故障的概率分析方法,按照电网连锁故障可能的发展时序进程对连锁故障的
永磁直线同步电机由于其特有的直线运动形式,且具有效率高、推力密度大等优点,在工业中应用十分广泛。由于电机两端铁心断开,造成磁场分布不均匀、三相互感不对称以及边端效应等现象,因此在永磁直线同步电机设计中对电机磁场分布及特性的分析非常重要。在电机设计中常采用有限元法,虽然有限元法计算结果准确,但是计算量大且耗时长,并不适合用于电机设计初期和优化阶段。等效磁路法则很好地协调了计算结果准确度和计算时间之间
电力作为支柱能源在国民经济可持续发展中起着重要作用。在我国,电网技术正朝着高电压、大容量、跨区域、大电网的方向发展。为克服电力企业所面临的各种压力并迎接新的挑战,电力企业希望通过数据资源的整合,优化企业数据结构,有效配置企业资源,从而提升企业效率并控制成本。长久以来,电力企业资源缺乏统一规划,各信息系统间难以相互交互,信息资源不能共享,给电力企业信息化进程带来极大阻挠。为摆脱这一困境,首先要对电力
随着我国汽车工业的高速发展以及国家可持续发展战略的要求,汽车的节能减排、轻量化已被列入汽车工业发展的关键课题。纤维增强复合材料因其具有高强度、密度小、耐腐蚀等诸
电梯运行中存在爬行距离问题,影响乘客乘坐的舒适度和浪费乘客乘坐的时间。原因是电梯在接近目标楼层时存在一个约费时10秒左右、爬行距离10厘米左右的平层低速运行段。这个
轴向运动纳米梁是一种重要的工程简化模型,微纳机电系统中的许多微纳米尺度器件,如超小型带、纳米纤维、微泵、硅加速度传感器等,其中的元件都可以抽象成轴向运动纳米梁模型进行理论分析。在微环境下,构件具有自身固有的特性,一方面由于经典连续介质力学缺乏对材料内部特征尺度的描述,微观结构表现出的尺度效应得不到合理的解释,另一方面受轴向速度的影响,结构可能会产生较大的横向位移,从而导致系统疲劳或质量下降。为确保
学位
近年来,随着电网传输功率的日益增长,系统越来越频繁地运行在极限点附近,电压不稳定问题对电网安全运行的威胁日益严重。由于电力系统是一个非线性程度极高的大规模复杂系统,在线寻找能够同时保障系统安全且控制成本最小的电压协调控制策略一直是一个极具挑战性的课题。本文主要研究电力系统中长期时间框架下的电压紧急协调控制问题,所做工作主要如下:针对模型预测控制在中长期电压紧急协调控制应用中遇到的在线计算量大、预测
本课题是针对天津钢铁有限公司110吨LF炉项目,在前期已完成智能控制的基础上,进一步研究三相交流电弧炉的智能解耦问题。三相电弧炉是一种存在着三相不平衡、强耦合、时滞、时变的强非线性冶炼系统。由于三相电极之间存在耦合,任意一相电极调整位置都会影响其它两相,导致三相电极很难调整稳定,不但增加了电极损耗,而且浪费了大量能源。由于对角递归神经网络(DRNN)具有能够逼近任意非线性映射的特点,且具有较强抑制