基于二维层状半导体的多功能电子器件研究

来源 :华中科技大学 | 被引量 : 0次 | 上传用户:ywqiang
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为了实现高性能低功耗的集成电路技术,新材料和新器件结构开始被广泛研究。二维范德华异质结由二维层状材料之间的范德华力结合,无需考虑晶格匹配和热膨胀系数匹配等制约因素,因其丰富的能带组合类型为设计新结构、多功能的电子器件带来了巨大的想象空间。因此,基于二维范德华异质结的存储、高频、逻辑等器件将在未来的微电子器件中发挥重要作用。二维半导体黑磷(BP)是一种具有各向异性的双极性半导体材料。直接带隙的黑磷具有带隙随厚度可调特性且室温下的迁移率高达1000cm2V-1s-1。多层二硫化铼(ReS2)是一种带隙约为1.5eV并具有各向异性的n型半导体材料。本文利用黑磷和二硫化铼的独特性质构建不同结构的多功能异质结器件,详细分析了器件的工作机理,并系统的表征了器件的电学特性。其主要内容包括以下几个方面。
  (1)本文实现了基于硅衬底和柔性衬底上的黑磷浮栅存储器。在黑磷/氧化铝/黑磷实现的存储器结构中,沟道中的载流子在栅电场作用下隧穿进入并俘获在浮栅中实现信息的存储。研究表明,该浮栅存储器实现的编程/擦除比超过103,且在1200s持续测试中保持稳定。由于使用了高κ栅介质,存储器可以在15V以内进行擦写操作,且实现载流子注入速度超过1019cm2s-1。最后,柔性器件可以在1.25%的弯曲度的状态下弯曲超过1000次,展现了器件良好的耐弯曲特性。
  (2)本文还研究了黑磷/氧化铝/黑磷结构的多端垂直隧穿器件。本文系统地分析了器件的工作原理和电学特性。器件可以高效地实现载流子从上层黑磷到下层黑磷的带间隧穿。与传统隧穿器件相比,隧穿的载流子在该结构中的输运垂直于沟道中驱动电流的输运。隧穿电流引起的空间电荷效应可以调节上层沟道黑磷中的载流子浓度导致一个巨大的负微分电阻(NDR)现象和极小的亚阈斜率(室温下小于60mV/dec)。该器件以仅为热电子发射极限1/10的体因子在70K到360K的温度范围内都实现陡峭亚阈斜率开关的特性。
  (3)本文最后研究了基于黑磷/二硫化铼的横向异质结器件,并分析了其机理和多功能化的应用。在黑磷器件的界面工程中,通过使用高κ介质对界面的优化,提高了黑磷晶体管的性能。通过对黑磷器件进行氧化使界面处形成POx层,实现了存储功能。在此基础上,本文建立能带模型对黑磷/二硫化铼异质结的反双极性(Anti-ambipolar)的输运机理进行了分析。利用异质结器件首次实现了三进制且具有非易失性的逻辑反相器和可调的“三语”响应人造突触。展示了范德华异质结在实现多功能存算一体器件中的优势。
  这些发现为异质结输运机理的分析提供了参考,为异质结作为新功能和多功能电子器件提供了思路,展示了二维异质结电子器件在未来微电子技术中的应用潜力。
其他文献
继石墨在2004年被证明能够以单原子层形式(即石墨烯)存在以来,六方氮化硼(h-BN)也成为了世界上最受瞩目的纳米材料之一。作为一种硼氮原子交错排列的sp2轨道杂化二维层状材料,六方氮化硼具有和石墨烯高度相似的晶格结构,且晶格常数差异只有1.5%。然而,不同于半金属特性的石墨烯,六方氮化硼是目前所有已知二维材料中仅有的绝缘体材料,具有无悬挂键、无电荷陷阱且原子级平整的表面,它又被认为是石墨烯电子器
当前无线通信的主流发展方向之一是实现多协议标准的集成。灵活的多标准无线电系统具有良好的可编程性和可重构性,是集成多种无线标准以适应无线协议发展的有效方法。基于分数型锁相环(phase-locked loop,PLL)的宽带低相位噪声频率合成器(frequency synthesizer,FS)是这种可重构无线电中的一个具有挑战性的模块,以满足多种主要的无线通信标准的要求,如蓝牙,WLAN802.1
学位
钙钛矿太阳能电池由于其具有光电转换效率高、制备工艺简单及成本低廉等众多优点近年来逐渐引起了科研工作者的广泛关注,且发展极为迅速,短短几年之内,其单节电池的转换效率已经突破25%,可以与市面上广泛应用的硅太阳能电池、成熟的碲化镉和铜铟镓硒薄膜太阳能电池相媲美。其中,反式平面异质结型钙钛矿太阳能电池的制备全程都可在较低的温度下完成,制备工艺简单,制备成本较低,而且能够适用于柔性太阳能电池的制备,因而该
大数据时代下,神经形态计算在克服冯·诺依曼瓶颈、高效处理数据密集型计算等问题上具有巨大优势。为了构建神经形态系统,技术成熟度高、工作机制稳定、突触功能丰富可调、权值更新线性对称的新型人工突触成为迫切需求。多端薄膜晶体管器件在作为人工突触器件时,具有工艺成熟、稳定性高、可靠性好、信号处理与传输并行、与CMOS技术兼容性高等优点,在探索人工神经网络、发展智能边缘计算等新型信息处理领域具有巨大潜力。  
光学超材料是一种由规律排列的电磁单元所构成的人工材料,能够对电磁波的振幅、相位和偏振等物理特性进行调控,产生许多常规材料中不存在的物理现象,场局域效应就是其中非常重要的一种。场局域效应能够限制电磁场的分布,提高区域内的电磁场强度,显著增强了光与物质的相互作用,是超材料对电磁波进行调控的关键基础。因此,场局域效应具有重要的研究意义,并且在能源、信息和健康等领域展现出巨大的应用价值。然而,受限于超材料
基于局域共振效应的光学超表面是一种人工构造的且能对外界入射光作出响应的具有特殊功能的器件。局域共振效应是这种超表面的根本工作原理。在光与物质的强烈相互作用下,基于局域共振效应的光学超表面可以对入射光的相位、振幅等进行精确的调控,使其散射、反射、吸收谱等能够按照所需求的功能来设计,而且这个过程通常伴随着强烈的场增强效应,场增强效应在显示、能源以及生物等方面具有重要的应用。等离激元超表面和基于高折射率
RRAM器件的性能与其阻变层材料有着紧密联系,现在已经在很多的材料中发现了非易失性的阻变特性,其中,钙钛矿(Perovskite)结构材料具有独特物理和化学性质,如铁磁性、铁电性等,在实现RRAM器件多功能化方面具有巨大的潜力,成为RRAM器件中被广泛研究的材料之一。BaTiO3(BTO)和BaxSr1-xTiO3(BST)是典型的钙钛矿结构半导体材料,目前基于这两种薄膜的RRAM器件已有报道,但
随着现代信息技术在智能化领域的不断发展,人们对数据存储的深度与广度都提出了越来越高的要求,不仅希望存储介质能够用于制造各类成本低廉、容量巨大的存储器件,而且在新介质显示、类脑计算等领域表现出长远的发展潜力。而现有的存储器体系经过数十年的发展,在存储容量与价格上似乎已经走向尽头,更不要说新技术应用领域的发展潜力。因此,人们需要一种新的存储介质,同时具备低成本和高性能两种特点。相变存储器是最有潜力的下
学位
窄带光电探测器在检测光信号强度的同时可以实现光波长的鉴别,在机器视觉、图像识别、生物成像等领域都有着十分重要的意义。目前,窄带光电探测器的结构比较复杂、制作成本昂贵、探测效率低。窄带电荷收集效应是一种实现窄带光电探测的有效手段。但是为了限制表面载流子的收集,基于此效应制作的探测器需要较厚的吸光层或额外的电荷阻挡层,且维持窄带响应的工作电场不能偏大。此外,窄带探测器的响应峰对应于材料的吸收带尾波段,
硫化铅(PbS)胶体量子点因具有低成本溶液工艺制备、高消光系数、良好的稳定性和多激子产生(MEG)效应等优点,被视为极具发展前景的光伏材料。基于此,小尺寸(带隙为1.3~1.4eV)PbS量子点太阳能电池经认证后的效率高达12.3%。此外,由于强烈的量子尺寸效应,PbS量子点带隙可以在0.5~1.9eV内大范围可调,既可以满足单结太阳能电池的需求,还可以制备量子点红外光伏器件,并与其他电池构成互补