基于MOFs构筑镍基电极及其在超级电容器中的应用

来源 :大连理工大学 | 被引量 : 0次 | 上传用户:xuelun2003
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
作为新兴绿色电化学储能器件,超级电容器一直备受人们关注。然而,低能量密度阻碍了其进一步开发。为填补日益增长的能源短缺问题,开发高性能电极材料是解决问题的关键。镍基化合物因具有高理论容量、丰富的储量以及经济环保等优势,成为超级电容器电极材料的热点研究对象。然而,镍基化合物较差的导电性和结构稳定性限制了镍基材料在超级电容器领域的进一步应用。本文以MOFs材料为研究介质,利用低维基底的结构导向作用,构筑低维镍基MOFs复合物和MOFs衍生的镍基复合物,从而调控电极材料的理化特征,提升镍基复合物导电性和循环稳定性,优化电化学性能。以BDC为有机配体,Ni2+为金属中心,通过Ti3C2Tx MXenes表面的含氧官能团诱导制备Ti3C2Tx/Ni-MOFs微米带。MXenes的存在不仅可以提高复合材料的导电性,还能提供额外的双电层电容和法拉第赝电容。在Ni-MOFs微米带和MXenes的协同效应下,Ti3C2Tx/Ni-MOFs微米带提供了丰富的反应位点,并缩短离子传输路径促进离子转移。在1 A g-1的电流密度下表现出1124 F g-1的高比容量,在20 A g-1下依旧可以达到697 F g-1的比容量(62%的容量保持率)。以1D Co-CH纳米线作为基底,在其表面诱导生长Ni-MOFs,形成均匀的一维复合材料。形成的异质界面增加了活性位点,改善了电子排布并加快了电荷转移速率。同时,构筑的核-壳结构可以增加OH-离子的吸附能,促进电化学活性,促进电极材料的可逆氧化还原反应的进行。因此,Co-CH@Ni-MOFs电极在1 A g-1下表现出1246 F g-1的高比容量,并且在150 A g-1下仍有70.3%的容量保持率。此外,组装的Co-CH@Ni-MOFs//AC非对称超级电容器在800 W·kg-1时,能量密度可达58.0 W·h·kg-1,在16000 W·kg-1下保持29.9 W·h·kg-1的能量密度。以Ti3C2Tx MXenes作为结构导向基底均匀生长Co-二甲基咪唑(Co-Mim),通过自模板转化策略合成NiCo-LDH/Ti3C2Tx。所制备的复合材料继承了Co-Mim前驱体的形貌,并且所形成的NiCo-LDH与MXenes充分接触。复合材料的构筑不仅提高了导电性,还暴露了丰富的活性位点,从而进一步优化其电化学性能。此外,理论计算表明LDHs与Ti3C2Tx MXenes耦合可以增加电化学反应活性和OH-离子的吸附能,改善电极材料中的可逆氧化还原反应动力学。因此,NiCo-LDH/Ti3C2Tx的电极在1 A g-1下表现出1030 F g-1的高电容,在50 A g-1下依旧保留61%的初始比容量,相应的非对称超级电容器在800W kg-1的功率密度下实现了59 W h kg-1的高能量密度。
其他文献
面对由碳排放引发的一系列环境问题,和对于可持续发展策略和绿色化工理念的综合考虑,对于温室气体的捕集分离成为了目前需要解决的重要问题。膜分离法因其工艺简单,耗能低,绿色无污染等优势在气体分离领域具有广阔的前景。聚合物膜具有材料易得、制备简单等优势是最易实现工业化的膜类型,但是聚合物膜的气体渗透性和选择性之间受到“trade off”的制约,导致难以获得优异的分离性能。因此,出现了一些新类型的聚合物膜
学位
全钒液流电池(VRFBs)是一种大规模电化学储能技术,因其响应速度快、电池配置灵活等优点受到越来越多的关注。其隔膜作为其关键部分之一,对电池性能和成本具有重要影响。理想的隔膜应兼具低成本、低钒渗透率、高传导质子能力和高稳定性等优点。商业化全氟磺酸膜具有高的质子传导性和稳定性,但其钒渗透率较为严重,且价格昂贵,限制了VRFBs的规模化应用。聚芳醚类聚合物因成本较低和稳定性好等优点受到关注。本论文结合
学位
聚α-烯烃(PAO)可调制不同品种的机油、热传导油、压缩机油和润滑脂等,尤其能调制高温及极寒条件下的润滑油。目前用于高碳烯齐聚制备聚烯烃的催化剂依旧主要是均相催化剂。但是均相催化剂不能达到再次回收多次使用的目的。多相催化剂虽然活性比较低、选择性比较差,但是其可实现催化剂回收,可以多次催化1-癸烯聚合,减少了催化剂的浪费。因此,开发多相催化剂来有效催化1-癸烯聚合并实现重复利用对于聚烯烃的制备具有重
学位
21世纪以来,环境与发展成为现在的全球议题,各个发达国家都提出碳减排、碳中和的口号,我国作为最大的发展中国家也提出了2030年“碳达峰”及2060年“碳中和”的战略目标。因此,发展大规模的可持续能源系统是人类目前面临的主要挑战之一,同时这也是最大限度地保护我们赖以生存的家园不受破坏的有力举措。将能源从化石燃料转向绿色氢能源,是解决化石燃料短缺问题的一个有前途的替代途径。作为一种绿色制备氢能源的方法
学位
面对传统能源日益枯竭和环境污染加剧的现状,金属-空气电池(MABs)、燃料电池等先进的能源转化系统越来越受到重视。但是,氧还原反应(ORR)与氧析出反应(OER)动力学较慢、超电势高、转换效率较低,成为制约MABs、燃料电池等清洁能源设备的主要瓶颈之一。虽然Pt/C和Ru O2/Ir O2分别表现出出色的ORR和OER催化活性,但它们成本高、丰度低、稳定性差、催化活性单一,针对这些突出的问题,本论
学位
随着传统化石能源的不断消耗,各国都在寻找新能源的替代方案,生物质能是唯一的可再生含碳资源。但是生物质能本身含氧量高,导致其热值低化学稳定性差,所以将其进行加氢脱氧制备高附加值化学品是十分关键的。其中糠醛作为重要的生物质平台化合物,由富含木质纤维素的农业肥料中制备而成,其原料不在人类的食物链范围内,每年我国产量丰富,导致糠醛价格低廉,下游产品经济价值高,需求范围广泛,其中2-甲基呋喃作为糠醛加氢脱氧
学位
目前,随着工业化进程的高速发展,全世界CO2排放量逐年增加,温室效应日益加剧,为实现绿色可持续发展,碳达峰和碳中和已成为我国“十四五”时期必须着手推进的重点工作之一,因此对CO2的捕集和分离已经迫在眉睫。与传统的CO2分离方法相比,膜分离法具有分离效率高、能耗低等发展潜力。结合聚合物膜和无机膜优势的混合基质膜(MMMs)理论上可实现高渗透性和高选择性。金属有机骨架(MOF)部分有机的结构使其相较于
学位
水资源短缺问题日益严峻,因此,加强水资源的开发与利用成为了全社会关注的问题。大气中的水雾蕴含大量的水资源,主要包括自然界存在的浓雾与工业产生的大量水雾。因此,回收大气中的水雾是一种行之有效的节水办法。本文针对水雾收集,以制备材料为主体,开展了如下三方面工作:(1)制备了超疏水不锈钢网并考察了其集雾性能。以304不锈钢网为基材,通过电沉积法在不锈钢网表面构建了本征疏水且具有微纳米尺度的氧化铈涂层,经
学位
目前,钠离子电池因其资源丰富、分布广泛、价格低廉等优点而备受关注,被认为是未来储能系统的最佳候选者之一。但是,钠离子质量较重且半径较大,电极材料在电化学过程中存在反应动力学慢及体积应变大等问题。因此,开发高性能的正/负极材料是钠离子电池商用的关键。在诸多正/负极材料中,结构稳定且工作电压高的氟磷酸钒钠(Na3V2(PO4)2F3,NVPF)正极和高理论比容量的金属硫化物(MSs)负极极具发展潜力。
学位
含氮化合物存在于很多生物活性分子、药物分子以及功能性材料中,因此构建CN键具有广阔的发展前景和应用价值,成为有机合成领域的研究热点之一。近年来,醇类作为价格便宜且可持续的原料代替卤化物作烷基化试剂,通过借氢反应构建C-N键为绿色C-N键合成提供了一种新策略。当前反应中的氮源大多为胺类化合物,从上游原料硝基化合物出发,经转移氢化生成胺类化合物,再串联借氢策略实现C-N键构建具有原子、步骤经济性高和环
学位