磁化背景中激光等离子体膨胀过程研究

来源 :中国科学技术大学 | 被引量 : 0次 | 上传用户:hitlic2009
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
磁场与等离子体广泛存在于宇宙当中,宇宙中的很多现象如蟹状星云的不稳定性结构、吸积盘喷流、高速粒子的产生等等,都与磁场和等离子体之间的相互作用有关。在天体物理或者空间物理领域,由于观测条件限制,针对这些现象的研究还不够完备。近几十年,随着脉冲功率技术的发展,陆续建成了强磁场装置和高功率激光装置,为在实验室条件下研究磁场与等离子体之间的相互作用提供了实验环境。本论文主要针对磁化背景中的激光等离子体膨胀进行了实验和模拟的相关研究。激光等离子体在磁化背景中膨胀,根据背景等离子体的阿尔芬速度,可以将膨胀类型简要分为亚阿尔芬速度膨胀和超阿尔芬速度膨胀。我们在中国科学技术大学的磁化激光等离子体装置上进行了亚阿尔芬速度膨胀的实验,利用激光烧蚀平面靶产生等离子体,由亥姆霍兹线圈提供准稳态准均匀的外磁场。通过等离子体的自发光成像以及飞秒光的干涉,诊断了激光等离子体在外磁场中演化过程。等离子体在外磁场中减速膨胀,在等离子体-磁场的交界面上出现严重密度堆积,形成抗磁腔结构。抗磁腔的最大尺寸与磁场约束效果相关,实验上改变激光能量五和磁场强度B,发现抗磁腔Vmax满足定标关系Vmax~E/B2。磁流体模拟发现该定标关系在激光能量达到千焦耳量级时依然成立,据此我们建议在黑腔聚变中引入外磁场,减缓黑腔腔壁等离子体的填充。等离子体减速膨胀带来的等效重力加速度会导致交界面出现槽纹不稳定性结构,不稳定性的线性增长率高于0.4/ns,远大于离子回旋频率。对不稳定性发展过程而言,此时电子已经磁化,而离子非磁化,所以这是一种动理学不稳定性。根据线性阶段的增长率和非线性阶段的鱼骨模特征,我们判断这种不稳定性是大拉莫半径不稳定性。这些现象与80年代到90年代的空间实验AMPTE和CRRES上观察到的现象一致,实验上的无量纲参数也符合空间物理的无量纲参数,为实验室空间物理提供了新的参数区间。我们在SGIIU装置上也进行了亚阿尔芬速度膨胀的实验,使用质子照相诊断到了槽纹不稳定性,并且发现磁场越强,不稳定性的波长越长,出现了模式合并的特征。通过分析我们确认这种不稳定性是低杂漂移不稳定性,这是首次利用质子照相拍摄到槽纹不稳定性结构。在SGII装置进行了超阿尔芬速度膨胀的实验,我们利用预脉冲产生高密度的背景等离子体,主脉冲产生的等离子体在磁化背景等离子体中超阿尔芬速度膨胀。利用皮秒光的干涉和纹影成像,观察到背景等离子体被驱动产生了明显的冲击波结构,冲击波的速度约为400km/s,马赫数为MA~7。利用法拉第筒诊断了离子速度,发现当背景等离子体磁化时,有更多的离子被加速到900km/s,此时高速离子峰值比无磁场情况下的离子峰值提高1.5到3倍左右。利用电子谱仪诊断了电子能谱,发现在磁化情况下有大量的电子被加速到20-150keV。上述实验结果表明,在超阿尔芬膨胀中形成的高马赫数磁化冲击波,对带电粒子的加速效果明显,在实验室环境下研究与磁化冲击波相关的粒子加速可以补充航天器测量的局限性。
其他文献
超导是固体物理学中最为广泛研究的宏观量子现象之一。探索高临界温度(Tc)的超导材料和超导电性的微观机理是该领域的两个最重要的关键点。ZrCuSiAs-型化合物具有简单的四方晶系,其层状结构是由两种四面体网络结构层交替堆叠形成。迄今为止,许多具有丰富化学成分的同结构化合物被合成,例如RETMPO(RE为稀土元素;TM为过渡金属元素),RETMAsO,RETMSbO等等(所有这些都被称为1111-型化
蛋白质化学合成能够在原子尺度上操控多肽/蛋白质结构,获得其他方法难以获取的蛋白质样品,例如D型蛋白质、非天然结构的多肽/蛋白质以及位点特异性的翻译后修饰蛋白质等,其已经广泛应用于生物化学、生物物理和生物医学等研究领域。目前,使用化学合成方法已经制备了大量重要的水溶性蛋白,例如翻译后修饰核小体、糖基化促红细胞生成素(EPO)和镜像DNA聚合酶等。除了水溶性蛋白,膜蛋白也重要,它参与很多重要的生理进程
2012年,欧洲核子中心的ATLAS和CMS探测器上发现了标准模型所预言的125 GeV的Higgs粒子。尽管标准模型中所包含的粒子都已被找到,但是在粒子物理领域中仍然有很多问题是标准模型所无法解释的,如中微子振荡,精细调节问题,暗物质,暗能量等。目前高能粒子物理领域的两大主要发展方向分别是精确检验标准模型和寻找标准模型之外的新物理。随着高能实验数据的不断积累,统计误差会不断降低,为了更好的研究理
双电子复合是聚变等离子体和天体等离子体中最基本的反应机制,复合速率系数是计算等离子体中电荷态分布和模拟等离子体环境辐射谱线的重要参数。配备有电子冷却器的重离子冷却储存环是开展高分辨电子-离子碰撞反应研究的理想平台,基于储存环的双电子复合实验可以获取高精度的双电子复合速率系数,为天体物理和聚变科学研究提供基准数据,同时为理论模型和计算程序提供严格的实验检验。本论文的研究工作着眼于与天体物理相关的高电
电子内在同时含有电荷和自旋双重自由度。对电子电荷自由度的电学调控是现代电子学的基础。基于电荷基本属性的应用,快速发展出成熟的电子技术,是第三科技革命热潮的重要引擎之一。然而,对电荷基本属性的应用也遭受一些无法避免,亦无法克服的困扰。电荷-电荷相互作用一般在几百个毫电子伏特,就这决定了需要施加更高的外场(例如电压)去克服它们之间的相互作用,高电压下会导致较大的热损耗,造成大量的资源浪费。相反地,电子
采用扎根理论研究方法,对396条"中国最美的书"的评委点评进行编码分析,在此基础上构建"中国最美的书"装帧设计影响因素模型。研究认为,"中国最美的书"装帧设计受到创作者需求设计、读者需求设计、书籍需求设计三重因素的影响,书籍装帧设计审美的认知是由读者、书籍和创作者共同完成的。在书籍设计实践中,设计者要站在读者的角度、书籍的角度,考虑市场的需求做好书籍的装帧设计。
在本论文中,我们研究了电磁场中自旋1/2粒子的魏格纳函数。协变的魏格纳函数是在8维相空间{xμ,pμ}中定义的4维矩阵,它的各个分量可以给出粒子分布、流密度、自旋分布等物理量。从狄拉克方程出发,我们得到了魏格纳函数满足的运动方程,包括狄拉克方程形式的一阶微分方程以及克莱因-高登方程形式的二阶微分方程,这些方程都是狄拉克空间中的矩阵方程。我们证明了,上述方程的一些分量可以由另一些导出,因此狄拉克形式
原子与分子的激发和退激发现象普遍存在于核聚变、等离子体、星际空间、行星大气和化学反应过程中。研究原子与分子的激发性质对等离子体物理、天体物理、物理化学等学科的发展具有重要的意义。原子与分子的激发性质包括能级结构和动力学特性,后者常用动力学参数描述,包含着电子的初、末态波函数的信息。在原子与分子物理学科,动力学参数主要以截面、振子强度或者形状因子平方等形式表示。随着现代谱学技术的发展,能级结构的测量
【目的】探讨益气活血方对急性心肌梗死(AMI)大鼠心肌损伤的修复作用及机制。【方法】将60只大鼠随机分为假手术组、模型组、中药组、Wnt-C59(Wnt/β-catenin信号通路抑制剂)组,每组15只。模型组、中药组、Wnt-C59组大鼠采用冠状动脉前降支结扎法建立AMI模型,假手术组大鼠仅打开胸腔后缝合。成功造模后,中药组大鼠灌胃益气活血方药液6.48 g·kg-1·d-1,Wnt-C59组大
量子力学自诞生之日起,就伴随着质疑与争论。以爱因斯坦为代表的一众科学家坚信局域实在论,认为量子力学只是对客观世界的一种不完备的描述,而以玻尔为代表的另一方则认为量子力学就是对客观世界的真实描述。双方展开了接近三十年的争论,直到1964年约翰贝尔提出了著名的贝尔不等式,使得这场旷日持久的争论第一次能够通过实验的手段来进行验证。贝尔的理论指出,根据量子力学预测得出的一些现象并不能通过局域实在论来解释。