超模理论在光纤模式选择耦合器的分析和设计中的应用

来源 :北京交通大学 | 被引量 : 0次 | 上传用户:mobydick2000
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
光纤模式选择耦合器(Mode Selective Coupler,MSC)是一种可以实现不同光纤横模转换的新型光纤耦合器,可以用于模分复用光纤通信系统中的模式复用/解复用,也可以用于光纤激光器中产生特定高阶横模激光。近年来随着模分复用光纤通信技术、光场调控及应用技术等的发展,光纤MSC获得了较多的关注,相关的分析理论、制造工艺等日趋完善,有力支撑和推动了相关器件和系统的发展。本论文在前人研究的基础上,聚焦光纤MSC的理论分析和设计。重点研究了超模理论在光纤MSC的分析和设计中的应用。取得的主要研究成果如下:(1)分别采用耦合模理论(Coupled Mode Theory,CMT)和超模理论,结合数值仿真,研究了对称单模双芯光纤耦合器的工作机理,计算了不同结构参数下单模双芯光纤耦合器的耦合长度,并进行了对比分析;为分析两组计算结果存在误差的原因,采用CMT推导得出的双芯光纤模型中超模的传输常数和光场分布,与基于全矢量有限元的COMSOL软件求得的数值结果对比,进行分析和研究。(2)将单模双芯光纤的超模理论分析推广到非对称双芯光纤型MSC中,使用CMT,得到了非对称双芯光纤型MSC结构中的超模的传输常数和模式场分布的解析表达式。仿真结果表明,在强耦合情况下,非对称双芯光纤型MSC的超模的传输常数的解析结果和数值结果之间误差较小。(3)将非对称双芯光纤型MSC的耦合长度和最大功率耦合效率表示为超模的传输常数的函数,并分别使用超模的传输常数的解析结果和数值结果计算了不同结构参数下非对称双芯光纤型MSC的耦合长度和最大功率耦合效率。仿真结果表明,在强耦合情况下,使用超模的解析结果和数值结果得到的耦合长度、最大功率耦合效率误差很小。在实际中,可以使用基于有限元法的仿真软件COMSOL直接得到非对称双芯光纤型MSC中超模的传输常数,进而得到所需要的耦合长度和最大功率耦合效率。(4)使用基于有限元法的COMSOL软件,仿真分析了对称双芯光纤型MSC和非对称熔融拉锥型光纤MSC结构的超模图像。研究结果表明,对称双芯光纤型MSC和非对称熔融拉锥型光纤MSC结构的超模图像,与非对称双芯光纤型MSC中的超模图像具有相同的特征,可以使用所获得的超模的传输常数,计算相应的耦合长度等特性参数。(5)基于超模理论,使用康宁公司生产的SMF-28型单模光纤、Thorlab生产的SM2000型双模光纤,设计了工作在1550 nm波段的非对称双芯光纤型MSC和非对称熔融拉锥型光纤MSC。
其他文献
近年来,低频段频谱资源越来越稀缺,高频段的太赫兹已成为无线通信领域的研究热点。采用高增益定向天线的太赫兹通信可实现多条数据流的并行传输,并行传输可以进一步提升网络容量。太赫兹通信有望满足未来回传数据流的高吞吐量需求。在太赫兹无线回传网传输调度研究中,如何充分利用并行传输和高带宽的优势来保障更多数据流的服务质量(Quality of Service,QoS)需求,是一项巨大挑战。此外,日益增长的用户
超短脉冲激光以极高峰值功率、极短脉冲时间所带来的独特优点,现今已经被广泛应用于物理化学、生物科学和材料科学等诸多前沿交叉领域。同时,伴随着科技的发展和应用的深入,人们对超短脉冲激光器的要求日益提高,在越来越多的应用中需要多路超短脉冲甚至来自不同波段的多路超短脉冲同步工作以实现更多的功能,这使得超短脉冲光源由简单单一化向系统化复杂化和协同化发展。实现脉冲光源的协同工作日益引起重视并成为研究热点。传统
由于超连续光谱具有宽频谱和高相干性等特点,在光通信系统、光谱学、国防安全以及生物医学等领域有着广泛应用。本论文提出了三种正常色散高非线性保偏光纤结构,并数值仿真和分析了保偏光纤中两个正交偏振基模的超连续光谱的产生,主要工作内容如下:(1)介绍了脉冲在光纤中传输的理论模型,包括光纤的群速度色散、非线性参数、损耗、双折射的定义和计算公式。然后,阐述了广义非线性薛定谔方程及其数值求解方法。(2)提出了一
随着电力电子技术的发展,传统的硅器件已经无法满足一些高温、高压、高功率密度等应用场合的性能要求,宽禁带半导体器件应运而生。SiC MOSFET作为宽禁带半导体器件的典型代表,具有耐高温、耐高压、开关速度快、导通损耗低等优点,是功率器件市场的研究热点。相比于同等级的Si IGBT,SiC MOSFET的芯片面积更小,电流密度也更大,所以SiC MOSFET的短路耐受时间比Si IGBT的要短的多,只
掺铥光纤激光器(Thulium-Doped Fiber Laser,TDFL)具有稳定性优良、结构灵活特性,且输出位于人眼安全的2.0μm波段的激光,单纵模(Single Longitudinal Mode,SLM)TDFL在军事、医疗、雷达、光通信及传感等领域有广阔的应用前景,波长可切换光纤激光器因其输出激光波长的可调性和灵活性而在波分复用系统、传感网络和光通信网络中有重要应用。利用法布里-珀罗
高铁是我国科学技术自主创新的一面旗帜,其在速度、可靠性、舒适度等方面不断地提高。IGBT作为高铁中牵引变流器的关键器件,其可靠性与列车的安全运行有着密切的联系。IGBT伴随着列车运行会承受频繁的电气应力、机械应力,以及温度应力等,研究IGBT在列车运行过程中的损耗热特性与电气耐受特性,可以对牵引传动系统可靠性的提升以及列车运行控制的优化提供一定的理论指导。论文首先介绍了高速列车的运行特性和牵引变流
少模光纤通信作为一种提高通信系统传输容量的潜在方案而备受关注。少模光纤通信系统以光纤中相互正交的信号模式作为独立的通信信道进行信息的传输,实现通信系统传输容量的大幅提升。少模掺铒光纤放大器是少模光纤通信系统中至关重要的中继放大器件,利用均匀掺铒的少模光纤放大器对系统中的模分复用信号进行放大时,信号会产生较大的模式增益差,导致少模光纤通信系统传输容量的急剧下降。因此需要对少模掺铒光纤放大器进行增益均
半导体晶圆制造领域对工件表面的加工要求极高,尤其是针对于新一代的化合物半导体材料如碳化硅(Si C)、砷化镓(Ga As)、氮化镓(Ga N)等,使得实现高表面质量、高平坦度的加工难度不断增加。磁流变抛光方法应用于半导体晶圆加工过程,能获得更高的表面加工质量与加工效率。然而磁流变平面抛光过程中,抛光液中的铁磁颗粒和磨粒由于磁场与工件的交互作用发生团聚形成大尺寸颗粒,磁流变液的流变特性会使得团聚大颗
IGBT(Insulated Gate Bipolar Transistor)是一种电压控制型功率器件,具有通态压降低、开关速度高、通流能力强等优点,在轨道交通、可再生能源和工业传动等领域中应用广泛。随着半导体制造工艺的发展,主流商品IGBT模块的功率密度有了显著的提高,通流耐压能力已经达到6500V/1000A,4500V/3000A水平,基本满足一般高压大功率场合应用。在某些大功率或者高功率密