珍稀濒危植物钻天柳的种子萌发和组织培养特性研究

来源 :东北林业大学 | 被引量 : 4次 | 上传用户:wreck2
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
钻天柳(Chosenia arbutifolia (Pall.) A. Skv)作为国家Ⅱ级珍稀濒危保护植物,其种群天然更新目前已受到严重干扰,由于该树种主要依靠实生苗进行繁殖,因此需加强对其种子萌发特性的研究,为其物种扩大繁殖提供基础。本研究对钻天柳种子萌发特性作了简要分析,通过试验研究了储存时间、三种环境因子(光照、温度和水分)对钻天柳种子萌发的影响,最终根据种子萌发率和初始萌发时间得出了最适宜其种子萌发的各项条件,储存时间:4℃下保存3周;光照:70%光照强度;温度:25℃温度;水分:水淹2mm。为建立更有效的钻天柳组培繁育技术,进而为该树种的迁地保护提供理论依据,本研究首次以温室内扦插成活健康苗为试验材料,选取其带腋芽茎段作为外植体,对最佳的消毒方法、诱导培养基和分化培养基进行优化筛选。材料消毒方法采用L9(32)正交试验设计,2因素(70%酒精和0.1%氯化汞),3水平(两种消毒剂的处理时间),研究不同消毒方式对钻天柳茎段腋芽诱导的影响,通过比较各处理的褐化率、污染率和萌发率,确定最佳消毒组合。研究结果表明,钻天柳腋芽的最佳消毒灭菌组合:70%酒精10s+0.1%的氯化汞8min,此时污染率最低,萌发率最高,且污染开始时间最晚。极差分析结果得出:酒精是诱导钻天柳腋芽萌发的主要因素,氯化汞则是影响外植体消毒效果的主要因素。采用5种基本培养基(WPM、DCR、MS、N-68、ACM)对钻天柳茎段腋芽进行诱导,通过比较腋芽萌发率及其生长状况,确定最佳诱导培养基。研究结果表明,在WPM培养基中钻天柳茎段腋芽诱导效果最好:萌发率最高,腋芽生长状况最好,叶片伸展、颜色深绿、嫩茎粗壮。茎段腋芽诱导结束后,以4种基本培养基(WPM、MS、 ACM、DCR)、3种激素(IBA、6-BA、GA3)为因素和4个浓度水平,采用L16(44)正交试验设计对钻天柳腋芽进行分化培养,结果表明:适合其腋芽分化的最优培养基组合为DCR+6-BA0.30 mg/L+IBA0.30mg/L+GA30.50mg/L与DCR+6-BA0.40mg/L+IBA 0.30mg/L+GA30.40mg/L两种,有.基本培养基和GA3是影响腋芽分化的主要因素,IBA和6-BA为次要因素。腋芽分化培养后,继续进行不定芽的增殖培养,得出适合钻天柳不定芽增殖的最佳培养组合为DCR+6-BA0.30mg/L+IBA0.30mg/L+GA30.50mg/L,此时不定芽增殖系数最高,当继代周期35d时,增殖系数达到最高,有此时芽苗生长状况最好。本研究对钻天柳种子萌发特性和组培快繁技术进行了探索,为高效保存和扩繁钻天柳种质资源奠定了基础,也为其它濒危植物的保护生物学研究提供了资料。
其他文献
1982年Tanaka等人首次提出模糊线性回归模型,它将观测值与估计值之间的偏差看成是由系统的不确定性造成的,这种不确定性用回归系数的模糊性表示,即将回归系数看成具有某种隶
本文利用站点降水资料、美国气候预测中心(CPC)的MJO指数和NCEP/DOE AMIP-Ⅱ再分析资料,研究了热带印度洋MJO对东亚夏季风降水和爆发的影响及可能机制,得到以下主要结论:(1)热
本文利用变分原理,特别是对偶极小化原理,研究了具有p-Laplace算子微分方程和系统的可解性问题,包括周期解,调和解和次调和解的存在性.全文共分为四章.第一章介绍了具有p-Lap
利用美国国家海洋和大气管理局(NOAA)的向外长波辐射(OLR)资料、欧洲中期数值预报中心(ECMWF) ERA-interim月平均再分析资料、全球降水气候中心(GPCC)降水资料,以及中国气象
抗毁性一直以来都是复杂网络理论研究的热点。针对不同的研究领域和层次,抗毁性的具体含义不同。以往主要对抗毁性测度的算法进行研究,而对其应用研究相对较少。本文主要对有
本文利用高分辨率中尺度模式WRFV3.5.1版本,通过改变17种云微物理过程参数化方案对2012年7月21日-22日北京特大暴雨过程进行了对比试验,评估各组试验对“7.21”北京特大暴雨
临界窗口估计在临床试验、工业设计和质量管理中的应用非常多,作用在样本上的刺激量由于量的变化会导致样本出现不响应、成功响应和过响应三种情况,假设临界窗口的两个临界点
本文主要讨论下列非线性奇异椭圆问题解的存在性和多重性.其中Ω为RN(N≥3)中的有界的C2区域,,γ>0,μ>0,β>2*-1(2*=2N/(N-2))为实常数,入>0为实参数,α≥0为非平凡的可测函
本文以疣孢漆斑菌(Myrothecium verrucaria)GH-01为实验菌株,优化了漆酶产生的条件,并获得了纯化后的胞外漆酶,考察了其酶学性质及电化学特性。通过对产漆酶影响较大的几种单
在黎曼几何中,曲率和拓扑之间的关系是中心问题之一。其中,球面定理是典型的代表,经过几十年的发展,最终Brendle等用Ricci流的工具证明了微分球定理。本文是关于论文[17]的一