【摘 要】
:
自20世纪初期排队论提出以来,排队系统的理论研究一直被广泛地应用于社会服务、生产制造、无线认知网络和计算机科学等领域。而随着科学技术和管理理念的发展,批服务的情形普遍存在于各类现代随机服务系统中。本学位论文将致力于复杂批服务排队系统的稳态性能研究,主要研究工作如下。第一,研究了带有重试轨道和不坚持顾客的M/M/1批服务排队系统。利用拟生灭过程的遍历条件,我们证明了该系统稳态存在的充分必要条件;之后
论文部分内容阅读
自20世纪初期排队论提出以来,排队系统的理论研究一直被广泛地应用于社会服务、生产制造、无线认知网络和计算机科学等领域。而随着科学技术和管理理念的发展,批服务的情形普遍存在于各类现代随机服务系统中。本学位论文将致力于复杂批服务排队系统的稳态性能研究,主要研究工作如下。第一,研究了带有重试轨道和不坚持顾客的M/M/1批服务排队系统。利用拟生灭过程的遍历条件,我们证明了该系统稳态存在的充分必要条件;之后,运用矩阵分析法和谱扩展方法对系统平衡方程进行求解,我们得到了任意时刻系统稳态队长的概率分布,并且获得了一系列重要的系统稳态性能指标,其中包括稳态时系统的平均队长和任意顾客在系统中的平均逗留时间等。最后,通过数值算例演示了系统参数对性能指标的影响。第二,研究了带有启动时间、多重休假和系统崩溃的M/G/1清空排队系统。由于此系统中服务时间、启动时间、休假时间以及维修时间服从一般分布,任意时刻的系统队长过程不再满足马尔可夫性质。因此,通过补充逝去时间为变量的方法,我们构造了二维连续时间马尔可夫过程来刻画系统状态,进而建立了系统的平衡方程及边界条件方程。运用概率生成函数和Laplace-Stieltjes变换,我们得到了任意时刻系统状态稳态分布的生成函数。此外,通过引入标记顾客的概念,我们还分析了稳态时任意顾客在系统中的逗留时间和系统休假循环长度的Laplace-Stieltjes变换。根据稳态性能指标,我们提出了关于系统成本函数的优化问题。最后,给出一些数值例子以此说明模型参数对成本函数最优解及关键性能指标的影响。第三,研究了带有N-策略休假和随机启动机制的M/M/1清空排队系统。引入N-策略休假有利于控制系统不必要的开机和运行成本,而随机启动机制则有效地缓解了由于阈值控制所导致的服务响应时间过长的问题。利用概率生成函数,对系统平衡方程进行求解得到任意时刻系统的稳态队长分布和其他一些重要性能指标,其中着重讨论了稳态时任意顾客在系统中的逗留时间。随后,我们构建了顾客的效用函数,基于乐观值准则分析了顾客在不同置信度水平下的均衡加入策略和社会最优策略行为,并给出数值例子说明不同系统参数对顾客加入策略的影响。第四,研究了带有不耐烦顾客和状态相依的批匹配排队系统。此系统和前几个系统最大的差别在于服务员的到达率随系统状态变化而变化,这不仅增加了系统的复杂性也给稳态性能分析带来了很大的挑战。利用矩阵几何方法和删失技术,给出了系统队长稳态概率的表达式。而后,通过数学分析的方法,我们得到了率矩阵中所有非零元素的渐近性质,其中包括带高阶项和同阶项的一项展开式以及带同阶项的多项展开式。据此,我们证明了任意时刻系统状态稳态分布的衰减函数,并用数值例子演示了不同参数下衰减函数的变化趋势。
其他文献
扩散过程的统计推断在工程、经济、军事等自然科学与社会科学领域内具有广泛的应用.在金融市场分析问题中,基础变量如股票价格,组合资产价值的动态规律的正确描述无疑是非常重要的.而它们的动态规律通常可以用扩散(带跳扩散)类模型来描述.随着金融市场的日趋完善以及信息技术的迅猛发展,人们能够越来越容易地获得高频数据(日数据、时数据、分数据甚至实时数据).探寻合适的模型和有效的方法来分析高频数据已经变成数学工作
含能材料在军事领域的广泛使用促使其不断发展创新,制备具有更高爆轰性能、更低感度、更好化学与热安定性的新型含能化合物是含能材料领域研究的热点。含能材料由传统CHON型含能化合物到高氮含能化合物的转变使氮杂环化合物(如:噁二唑,三唑,四唑等)受到广泛的关注。现代新型含能材料的设计不仅考虑分子的组成,也注重化合物的晶体结构与分子间弱相互作用力对含能化合物性能的影响,即更加注重探索含能化合物结构与性能之间
在微波、毫米波、光波段以及频率选择表面、天线、超表面、太阳能电池等诸多频段和领域存在着一些特殊结构,研究高效地获取其电磁特性具有重要的理论意义和使用价值。本文针对几种特殊结构的固有特点,比如周期性、密网格、旋转对称性等,聚焦其电磁仿真的难点和关键问题,研究实现快速精确的建模仿真方法。以矩量法为基础,以频域积分方程方法为主,兼顾时域积分方程方法,围绕周期格林函数、多层快速多极子、等效原理区域分解等快
目的:研究大量输血对急诊外伤患者T淋巴细胞亚群、凝血功能和炎症因子水平的影响。方法:选择2018年5月—2021年1月收治的需输血的急性创伤患者92例,根据患者输血量分为A组(48例)和B组(44例),其中A组为需要大量输血治疗,B组为非大量输血治疗。比较2组患者治疗前后T淋巴细胞亚群、凝血功能和炎症因子水平变化,并观察血液指标情况。结果:A组患者红细胞、血浆、血小板以及冷沉淀的输注量均显著高于B
混沌是非线性动力学系统所具有的一类复杂动力学行为,描述了确定性非线性系统的内在随机性,普遍存在于生物、气象、电子等系统的运行过程中。混沌系统是混沌理论中的重要内容,对其研究能够为工程系统的相关应用提供理论支撑,推动工程技术的创新。本文的研究重点是基于数模混合方法的混沌系统,及其在随机数发生器设计及分布式多输入多输出(Multiple Input Multiple Output,MIMO)雷达发射信
偏心旋转梁和轴向运动悬臂梁这两类弹性梁动力学问题研究具有广泛的工程应用背景,如机器人操作臂、武器身管、机床主轴、雷达天线等。随着机械系统的轻量化设计,在机械系统中总是不可避免地存在刚度不理想的柔性结构,这些结构在机构快速动作或者受到外界冲击载荷时将产生较大的弹性振动,影响系统性能。对于上述系统而言,偏心旋转梁和轴向运动悬臂梁动力学研究是评估结构动力行为以及最终指导结构设计、探索结构减振技术、设计运
图连接系统是指由若干个具有传感和驱动功能的子系统(子系统之间存在信息交流)所组成的大规模互联系统,如自动高速系统,无人机编队飞行,卫星组网,网络系统等.对发生状态时滞和参数跳变的系统进行稳定性分析和控制综合,一直是控制理论和工程领域中研究的热点问题.本文分别对图连接时滞系统的稳定性与分布式控制问题进行了深入研究.主要内容概括如下:1.针对具有定常时滞的图连接时滞系统,研究了时滞独立稳定性条件与分布
芮方法,即多体系统传递矩阵法,是近二十多年来提出并逐步完善的一种多体系统动力学新方法。它实现了多体系统动力学研究无需系统总体动力学方程,因系统矩阵阶次低、计算速度快、程式化程度高、总传递方程自动推导等优点而得到广泛应用。芮方法的理论和应用研究正处于高速发展中,其中以线性多体系统传递矩阵法的理论最完善、应用最广泛。作为国防973重大项目研究成果的重要组成部分,本文基于芮方法建立了一种用于机械系统动力
Schr(?)dinger算子出现在量子力学、声学、化学、工程力学、地球物理学、电子学及气象学等自然科学领域中,其应用极为广泛.本文研究Schr(?)dinger算子的逆谱与逆散射问题,旨在由其谱数据或散射数据确定Schr(?)dinger算子的未知源.第一章介绍Schr(?)dinger算子的物理背景和应用前景,综述国内外有关Schr(?)dinger算子谱及散射等理论的研究现状,以及总结本论文
本文运用对称性理论、动力系统分支理论研究了数学物理方程中若干非线性模型的相关问题,主要包含以下四个方面的相关内容:Lie对称理论、最优系统、分数阶微分方程和动力学理论。具体章节安排如下:第一章绪论部分,介绍了本文研究内容的理论背景和发展现状,这些理论包括对称理论、最优化理论、分数阶微分方程理论和动力系统分支理论,并阐明了本论文的主要的研究内容。第二章在对称理论的分析的基础上,利用经典的李群方法研究