旋翼无人机集群快速避障控制策略研究

来源 :南京信息工程大学 | 被引量 : 0次 | 上传用户:yudanlei198
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
旋翼无人机集群具有空间分布性广、功能分布性强以及系统容错性高等优势,目前已被广泛地应用于各个领域。然而,现有的旋翼无人机集群避障控制技术在复杂障碍物环境中的避障效率较低,特别是对其中的动态障碍物的避障成功率较低。针对该问题,本文以集群的快速避障为控制目标,基于有限时间一致性算法和人工势场避障算法设计快速避障控制策略,提高集群在复杂障碍物环境中的避障效率。通过计算机仿真及物理样机实验验证该策略在复杂障碍物环境中规避效率。本文主要研究内容包括以下几点:一是研究旋翼无人机集群有限时间一致性编队控制算法。针对集群的编队形成速度慢及编队控制精度低的问题,建立集群的编队模型并分析编队控制目标。然后,根据编队控制目标,基于有限时间一致性理论,从位置控制及姿态控制两部分设计编队控制器。接着,利用Lyapunov理论分析编队控制器的稳定性,证明其能在有限时间内达到编队控制目标。最后,通过计算机仿真验证编队控制器的有效性。二是研究旋翼无人机集群快速避障控制策略。首先,从实际应用需求及传统算法自身缺陷两方面分析集群在复杂障碍物环境中避障时需解决的问题。然后,针对其中的动态障碍物规避问题,通过引入关于障碍物速度的辅助势场及动态势场范围,从时间最优和空间最优两方面提高了算法对动态障碍物的规避速度及效率。同时,针对算法自身缺陷,一方面通过引入动态扰动及平滑调整区域,解决局部极小值及路径抖动问题;另一方面通过优化虚拟目标点触发机制,改善目标不可达问题。最后,基于NSB方法设计快速避障控制策略,利用优先级模型协调编队及避障任务的输出,实现集群的快速避障控制。三是搭建仿真测试平台和物理样机实验平台验证本文设计策略的性能。首先,搭建包含多类障碍物的复杂环境以验证该策略的避障效果。仿真结果表明:该策略避免了传统算法的自身缺陷,且规避动态障碍物的效率与成功率均领先传统算法。之后,搭建物理样机实验平台以验证该策略的实际应用效果,并对测试数据进行分析,进一步说明该策略的稳定性与应用性。
其他文献
电机驱动系统是电动汽车最为核心的部分,开关磁阻电机(SRM)结构简单、控制灵活和调速性能优越,因而成为目前电动汽车驱动电机类型的一种重要选择。功率变换器拓扑及其控制一直是电动汽车SRM系统研究的重要分支,研究兼具电机驱动和储能源充电能力的紧凑型变换器拓扑和优化控制策略,是未来电动汽车轻型化、智能化的关键。本文针对双电源输入的电动汽车SRM驱动系统提出了一种新型的集成驱动-充电功率拓扑,并对其双电源
积冰问题是飞行器常见的安全问题之一。飞机在积冰之初不易被察觉,但达到一定厚度就会造成严重后果。本研究旨在利用电磁散射理论和机器学习方法对飞机飞行环境进行研究。研究的内容和结论如下:(一)积冰翼型的气动系数仿真表明相比于洁净翼型,积冰翼型的失速迎角和升力系数均减小,阻力系数均增大;上下表面的不同位置对升力系数的影响不大,但阻力系数明显增大且在失速后上表面积冰的阻力系数更大;前缘的轻微积冰即可使翼型阻
本研究从汛期降水预测这一实际业务出发,提出了一个基于北美多模式集合预测海温的三步法预测方案:采用Can CM4、GFDL-CM2p5和GEOS-S2S三种先进的耦合地球系统模式的海温预测,进行统计订正后作为BCCAGCM大气环流模式的海温强迫信息进行非耦合预测,再使用预测的大气环流信息作为区域气候模式CWRF的侧边界进行动力降尺度预测。为了验证新预测方案的有效性,研究对1991年至2013年进行了
目前,大部分宜居性的研究都是单方面采用空间分析的方法讨论生态宜居性以及通过数据统计来分析生活宜居性。因此,本文通过建立一种新的气候宜居性评价体系,以及将气候宜居性和社会宜居性相结合的宜居性评价体系,综合生态和生活宜居两方面得到更加全面的精细化宜居性评价结果。本文选取浙江省为研究区域,采用精细化模拟的气象数据、地理数据、社会经济数据等,计算气候舒适度、多灾种自然灾害风险评价,并将二者通过统一时间尺度
气象-水文耦合是资料不足中小流域开展水文气象预报研究的有效手段。气象数据的质量,尤其是降水数据,是影响耦合预报精度的关键。因此,本研究以湖北省漳河流域为研究区域,开展了基于降雨偏差修正的气象-水文耦合实时径流预报研究。通过逐步订正法对WRF预报降雨进行偏差修正,构建了基于WRF数值天气预报模式和高分辨率WRF-Hydro分布式水文模型的WRF/WRF-Hydro气象-水文耦合模式。主要研究内容及结
随着无人机技术的快速发展,无人机已被广泛运用于军事、民用等多个领域,RTK技术在无人机上的使用需求也日益增多。但常规RTK技术应用在无人机定位上,存在操作繁琐、携带不便、无人机作业范围小以及定位精度可靠性较差等问题。针对上述问题,本文设计了一款基于网络RTK的无人机定位系统,本文主要工作内容如下:(1)分析无人机高精度定位系统的功能和非功能需求,提出系统一体化、小型化总体设计方案。针对系统总体设计
作为一种新型的星载极化合成孔径(SAR)系统,紧缩极化(Compact Polarimetric,CP)SAR能同时获取较丰富的目标极化信息和实现大幅宽观测,在海洋观测领域具有先天的优势。紧缩极化雷达系统工作原理是只发射一种极化的电磁波,同时接收两种极化方式的电磁波,相比于全极化SAR降低了系统设计和维护的复杂度,数据量是全极化SAR的一半,扩大了海浪成像的范围,可以获取更丰富的海浪信息。前人主要
风速、风向是大气探测中非常重要的气象要素,使用多旋翼无人机作为测风平台对提高小尺度下风速风向测量的时空分辨率有着重大意义。但是,多旋翼无人机的旋翼风场会对测风任务造成巨大干扰,这是一个亟待解决的问题。本文分析了多旋翼无人机周围流场的分布情况,优化了测风传感器的最适安装位置;根据传感器位置的空间结构,提出了自适应无人机姿态的风压正交分解测风算法;通过多传感器数据融合,提高了无人机姿态角的解算精度;设
近年来,随着无人机产业的迅速发展,无人机在航拍、植保、表演、监测等多个领域得到广泛应用。同时,由于使用门槛的不断降低,无人机使用管控方面暴露的问题也越发明显。为了对未授权的无人机飞行进行有效管控,当前提出了多种解决方案,其中使用GPS欺骗攻击对无人机的飞行进行干扰是一种相对简单且可行性较高的管控方法。利用这样的攻击可以对未授权的无人机进行驱离或者捕获,以保护区域安全和隐私。但是,当前的GPS欺骗方
气味源定位技术在生化恐怖袭击、危险物质泄漏、火灾和爆炸事故的防治中具有重要的应用价值。为提高气味源定位效率,一些学者尝试使用机器人自主地搜寻气味源。由于传统地面机器人易受地形限制,单个机器人搜寻范围有限,多无人机气味源定位具有更高的效率。但是目前有关多无人机气味源定位的研究较少,且多停留在仿真阶段,在实际应用时,存在三个难点问题:一是无人机与无人机之间以及无人机与障碍物之间的避碰问题;二是系统内部