氮化镓纳米划擦中表面及亚表面损伤机理研究

来源 :大连理工大学 | 被引量 : 0次 | 上传用户:sxfylhd
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
作为第三代半导体材料,氮化镓具有许多优异的性能,但应用中除自身性能良好之外,晶片还需要具有纳米级的形状精度以及亚纳米级的表面/亚表面损伤,而氮化镓硬度高、脆性大,加工中极易产生机械损伤。因此,清晰认识其在纳米加工中的微观机理,对优化加工工艺以获得高精度、低损伤的氮化镓晶片至关重要。本文通过分子动力学模拟和纳米压划痕实验,深入研究了氮化镓在纳米划擦中表面及亚表面损伤的形成机理及影响因素,旨在丰富氮化镓纳米加工理论体系的同时,为优化加工工艺提供理论依据和技术参考。首先,通过分析氮化镓纳米划擦过程可知,在划擦中,与金刚石压头接触处的氮化镓发生弹塑性变形,形成了大量非晶原子和分布在划痕两侧及压头前方的切屑。同时,在亚表层内也形成了间隙原子、空位缺陷、原子团簇、闪锌矿相原子以及“U”型半位错环等多种缺陷。其中,位错长度和闪锌矿相原子数随着划擦距离的增加呈现出波动式增长。此外,亚表面损伤层的存在也明显降低了氮化镓材料的力学性能及后续可加工性。与未受损伤的氮化镓相比(21.83GPa),纳米划擦后形成的带有亚表面损伤氮化镓的极限拉伸强度仅为9.26GPa,平均降低了约26.8%。工艺参数中划擦深度(H)对氮化镓在纳米划擦中表面及亚表面损伤的影响最为显著。当H<1.0nm时,已加工表面损伤严重,而H≥1.0nm时,已加工表面的质量显著提升,但其亚表面损伤却随着H的增加愈发严重。此外,高速和高温划擦也都有利于提升氮化镓的材料去除率,但当速度从25m/s增加到50m/s时,位错和相变原子增多,导致其亚表层损伤加剧。随着速度的继续增长(V>50m/s),亚表层的质量略微得到改善。因此加工中可以通过适当增大速度来提高材料去除率,并降低亚表面损伤。此外,与100K相比,当温度升高到1000K时,划擦后氮化镓内位错长度大约增长了3倍,氮化镓亚表层内塑性变形加剧,并且亚表面损伤层的宽度也明显增大。材料各向异性对氮化镓的机械可加工性也有明显影响。相较于Ga面,N面氮化镓在纳米划擦中已加工表面质量更高,但原子去除率低,亚表层内塑性变形严重,深入分析后发现b=1/3<11-20>的刃型位错是导致二者亚表层内塑性变形差异明显的主要原因。此外,对比[-2110]向,沿[0-110]向划擦时,氮化镓表面及亚表面质量都更高,纳米划擦实验结果也证实这一点。相同载荷下,沿[0-110]向划擦时,划痕表面及两侧裂纹更少,摩擦系数也更小。
其他文献
镍基高温合金Inconel718材料也被称为“万能合金”,是目前拥有着最普遍应用的镍基高温合金之一。它在高温下还拥有良好的机械强度、韧性及优异的抗氧化、抗辐照能力,在国防、宇航、核电、石油化工等行业中有着非常普遍的应用。由此,本文以材料性能角度出发,研究Inconel718合金材料激光熔覆后形貌尺寸规律和材料性能变化。此研究为激光熔覆Inconel718提供理论基础,在推动该材料零部件激光熔覆修复
学位
先进的飞行器技术作为航空航天领域中关乎着国家安全的重要技术,受到各国研究机构的青睐,可以说掌握了该技术就掌握了未来的战场主动权。先进飞行器研发需要大量的实验数据作为支撑,其中风洞实验获得的气动数据尤为重要。但随着风洞实验对飞行器模型气动力测量的准确性要求增加,风洞实验室的尺寸越做越大,为更大体积的飞行器模型进行吹风实验提供了优良的基础条件,但传统的风洞试验方法也开始逐渐体现出来各种不足之处。本文针
学位
微装配是将多个不同尺度的微小零件精密集成的工艺过程。显微视觉引导的定位和操纵是实现微装配任务的主要途径,定位操纵准确性与视觉测量分辨率密切相关。理论上物镜数值孔径越大,显微视觉成像的分辨率越高,但相应的视场、景深和工作距离也随之减小。有些装配任务要在高分辨率下才能保证精度,但其姿态调整则要在大视场条件下进行,以避免执行器、镜头、工件之间的干涉碰撞。在这类工作场景下,如何兼顾显微成像大视场和高分辨率
学位
立体微纳结构作为平面结构的重要补充,在微纳传感器、精密光学、组织工程、新能源等领域有着巨大的产业需求。然而,低成本、高效率地制备高长径比的立体线形结构比较困难。电流体喷印技术可以通过稳定的微纳射流实现立体结构的打印,具有打印分辨率高、材料选择范围广、工艺简单等特点,非常适合高长径比立体线形结构的制备。本文首先对热场调控电流体喷印的过程进行了理论分析,通过构建仿真模型,着重研究了墨水粘度对射流的影响
学位
混凝土是建筑工程中的重要材料,但混凝土在腐蚀性环境和冻融环境中易因水的渗入而被腐蚀或破坏,严重影响了混凝土建筑的安全性、耐久性和美观性。使混凝土表面获得超疏水性可防止水的渗透,能有效保护混凝土建筑。但现有超疏水涂料的机械强度较低以及现有超疏水混凝土与保温层的黏合强度较差,导致超疏水表面在建筑领域的应用受到限制。针对以上问题,论文通过在混凝土砂浆中加入聚丙烯酸酯乳液(PAE),研制了一种新型的超疏水
学位
加速度计作为惯性导航系统的核心元件,广泛应用于航空、航天等领域,加速度计精度的高低对导航和制导精度影响很大。为提高加速度计标定精度,离心机测试加速度计时,通过改变加速度计姿态和离心机转速提供多位置,多范围的信号激励,在保证位置精度的同时,得到不同姿态下的输出信号。目前,加速度计多位置测试通常需依赖精密转台实现高精度定位,而不依赖转台的方法精度又较低。本文根据加速度计离心机测试的位置要求,研制出一款
学位
传统的道路监控探头在处理交通事故中需要专业人员手动找到违规人员和肇事车辆,这样不仅效率低下,且因为探头被固定安装带来了机动性差、视野狭窄等问题。将无人机摄像头作为道路监控探头具有体积小、成本低、视野广阔、灵活性高等优点,此外,运用基于视觉的目标检测技术对无人机影像进行智能化分析可以快速且准确的定位地面的行人及车辆,同时大幅度提升监测效率。基于上述背景,本文对行人及车辆目标检测技术展开了研究,并基于
学位
在机械生产加工中,对切削力进行准确测量关乎对于整个切削过程的控制,是智能制造及自动化生产所不可或缺的技术。在众多可以实现切削力测试的测力仪中,压电式测力仪具有良好动态测试性能的突出优点,四维力测力仪能够满足车、磨、刨、铣等大多加工方式的切削力测试,四支点测力仪刚度高,能保证优良的测试精度,因此四维力四支点压电式测力仪得到了广泛应用。随着精加工和多任务加工设备的发展,近年来对于测力仪的测试性能和通用
学位
掩膜电解加工是一种应用广泛的加工技术,在金属微结构的加工中具有独特的优势,如:加工速度快、加工后工件无残余内应力、工具电极无损耗等。在进行常规掩膜电解加工金属微结构时,边缘效应影响下的边缘电场强度高于中心,导致金属微结构的整体尺寸均匀性较差。为了解决这一问题,本文提出了一种移动喷射式掩膜电解加工技术——通过缩小阴极面积使边缘效应减弱,利用移动阴极来平衡电流密度和加工时间,同时通过喷射加工及时排出电
学位
随着新一代航天装备向轻量化和高可靠发展,迫切需求一类大尺寸、超薄壁厚的铝合金球壳。常温拉深成形此类球壳,极易出现起皱和开裂并存缺陷。针对此难题,本文提出铝合金超低温拉深成形技术。该技术采用超低温介质将铝合金板材冷却至具有双增效应的临界温度,通过模具整体成形出薄壁壳体,具有成形极限高、组织性能易控制等系列技术优势。本文以2219铝合金球壳为对象,通过数值模拟和工艺实验方法,研究铝合金在不同超低温温度
学位