涡旋光的拓扑荷调控和涡旋相衬光参量放大成像技术研究

来源 :深圳大学 | 被引量 : 0次 | 上传用户:mj3140
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
涡旋光是一种特殊结构光场,具有相位或偏振奇点的扭曲光束,其相位为螺线形。这样的光束轮廓可以像开瓶器一样绕行进轴扭曲,并且其中心强度为零。根据涡旋光自身所携带的轨道角动量和涡旋相位,可以将其应用于很多领域:利用涡旋光的轨道角动量,能够传递给微粒,从而对微粒进行操作,比如俘获、平移微粒等;利用不同轨道角动量不会互相串扰,可将涡旋光用于光通信,提高光通信的系统容量;利用其角向相位旋转特性,在成像中可被应用于螺旋相位滤波器,从而提高成像的边缘轮廓分辨率。本硕士学位论文着眼于涡旋光的调控以及成像技术,主要做了以下两个方面的研究:1.首次提出了一种二进制编码兼容的光场调控系统,该系统可用于产生可调阶数的涡旋光和矢量光。系统阶数由二进制电信号控制分为位单元和符号单元,位单元由液晶波片及阶数不同的液晶涡旋波片组合而成,符号单元由两个液晶波片,并以三明治结构排列若干位单元,若干位单元的阶数满足二进制编码(1、2、4、8……),通过控制N个位单元和符号单元的电压,可控阶数为-2N+1~2N-1。该系统可以作为涡旋光、矢量光模分复用通讯中的调制、解调设备。2.首次从实验上获得了基于涡旋光泵浦的非共线光学参量放大的生物组织的涡旋相衬显微成像。该装置包括4f光学成像系统与在傅立叶平面上放置的光学参量放大器,通过使用2 GW/cm2的强度涡旋泵浦光的光参量放大器后,经过波长转换的闲频光图像中会出现明显的边缘增强效应,这使我们的设置能清晰地捕获相位目标的结构:细到几微米的青蛙卵细胞、植物草本组织和洋葱表皮,如果用更高放大倍数的显微成像分辨率可以进一步改善。这里光参量放大增益约为6.0,并随泵浦光强度的增加而增加,如果用飞秒激光泵浦,则泵浦强度可达每平方厘米数百吉瓦。高增益使得可以使用弱照明信号光进行光学成像,这通常是非破坏性成像的首选。同时,高增益还带来了较大的光参量放大带宽,这有助于获得高空间分辨的光参量放大成像。此外,非共线装置的设计将闲频光在空间上与照明信号光和强泵浦光分开,从而有效避免了两者的背景噪声。从上面的描述可以得出结论,我们的装置将SPF与高增益、高空间分辨率以及非线性频率转换结合在一起,因此它可以用于微米级别空间分辨率的波长转换显微光学成像。我们的实验结果表明,该工作为无损生物组织成像提供了强大的工具。
其他文献
表面等离子体共振(Surface plamon resonance,SPR)是光与表面等离子体相互作用时发生的一种共振现象。SPR对介质周围的环境变化异常敏感,基于SPR的光学传感器由于其高灵敏度、免标记、实时、快速、在线检测等优点,已被广泛应用于生物医学、环境监测、食品安全等领域。然而提高SPR传感器的灵敏度和检测精度一直以来都是该领域研究的热点。近十多年以来,一些先进二维材料如石墨烯、过渡金属
基于微多普勒雷达的人类活动识别可用于许多领域,例如睡眠监测,老人护理,人机交互和反恐监测等等。但是现有的分类算法从雷达数据的表示方式、特征提取和分类识别分析仍然存在许多不足。到目前为止,几乎所有的分类算法对基于雷达的动作进行识别都先对原始数据进行短时傅里叶变换(short-time Fourier transform,STFT),原始的雷达数据就表示为频谱图。然后用手工的方式或者用神经网络对频谱图
光声成像作为一种新型的生物医学成像技术在近几十年迅速发展,相比较纯光学与声学成像,光声成像技术在成像深度和对比度方面展现出更大的优势。但是,大多数光声显微系统采用压电超声换能器进行光声信号检测,受压电材料固有物理属性的限制,这类探测器的探测带宽有限,通常在几十兆赫兹左右,无法准确响应短脉冲光声信号。这导致了成像系统纵向分辨率较低(通常大于20μm),难以准确定位吸光物质的深度位置。而且,在光学分辨
随着科技的快速发展,5G时代万物互联人工智能的来临,物联网感知技术得到大力提倡,光纤传感技术愈发得到重视。自光纤光栅问世几十年来制备方法越来越多,对于光纤布拉格光栅而言其制备方法就有:双光束干涉法,相位掩模板法,飞秒激光逐点/逐线法等,应用光纤布拉格光栅作为敏感器件的传感器也越来越广泛。本文提出了在特种光纤上制备光纤布拉格光栅(Fiber Bragg Grating;FBG),并将其作为检测外界环
偏光片,作为薄膜晶体管液晶显示面板(TFT-LCD)最重要的组成部件之一,其性能对液晶面板的质量有重要的影响。而偏光片外观缺陷会降低整个液晶面板的显示质量,甚至造成整个面板的报废。因此,研究偏光片外观缺陷视觉检测技术具有重要的意义。针对难以检测的细微透明压痕缺陷,本文提出了一种基于机器视觉的偏光片外观缺陷饱和成像检测方法,主要研究内容如下:1.研究了一种饱和度指导的极细微压痕缺陷图像增强方法。条纹
近些年来,人工智能成为了我们日常生活的焦点。在人工智能时代,人脸识别技术被广泛用于我们的日常生活中,如智能手机的人脸解锁功能以及人脸支付功能等,因此人脸识别技术识别性能的提升成为相关研究人员的研究热点。为此,一些先进的人脸识别算法被相继提出并得到了广泛的运用,如非负矩阵分解算法(NMF)等。NMF算法的基本思想是用一组基图像的线性组合来表示原始图像,这种对原始图像进行分解的方法符合人类思维中“局部
非晶合金由于其特殊的原子排列结构,具有优异的理化综合性能。在机械、通讯、防护等多种领域存在诱人的潜在应用前景。激光熔覆(Laser Cladding,CL)作为一种新兴的表面改性技术,能够使原始粉末在高功率激光束中熔化至熔覆基体表面自激冷却,形成高致密度且与基体呈冶金结合的涂层。本文采用激光熔覆技术制备Fe55Cr25Mo16C2B2非晶合金涂层。影响非晶合金涂层形成的因素很多且相互作用。本文首先
卵母细胞非整倍体(aneuploidy)是人类染色体异常情况中最常见的类型,是指染色体的数量比二倍体多或者少一条或几条染色体。造成人类常染色体非整倍体这一异常类型的主要原因是卵母细胞在成熟过程中发生错误的减数分裂,这一异常也是导致女性不孕不育和胎儿先天畸形等相关疾病的主要内在因素。由于卵母细胞在生长发育过程中的复杂性和研究手段的限制,虽然人们已经对染色体减数分裂这一重要过程进行了大量的研究,但是其
随着科学技术水平的不断提高,3D打印技术发展迅速,特别是以LCD光固化技术为代表的新兴3D打印技术近年来迅速发展。由于LCD光固化技术的3D打印机与其他消费级的3D打印机相比,有着成型精度高、打印效率高且成本低等优点,3D打印行业内对于LCD光固化技术3D打印机的研究热度不断上升,同时LCD光固化技术的3D打印机产量日益增长。但是,目前行业内并没有专业的LCD光固化成型缺陷识别检测设备,生产线上依
随着农业技术的发展,市场上的水果品种越来越丰富,人们对水果质量的要求也越来越高,同时也希望借助某些检测技术来鉴别一些人眼所无法直观判断的水果外部品质。高光谱成像技术由于其波段范围宽,光谱分辨率高,不会对被测对象造成破坏等特点使之成为当下无损检测水果品质的一种重要手段。但由于目前水果的高光谱采集多是利用线扫描的方式,存在光谱采集装置笨重,采集光谱速度慢,容易受平台和物体快速移动的问题。这些因素使得高