基于DNAzyme的重金属离子电化学生物分析方法的构建及其研究

来源 :江苏大学 | 被引量 : 0次 | 上传用户:exiaodong1986
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
重金属因其毒性、持久性和生物蓄积性不仅造成生态环境污染,还通过食物链进入人体,威胁人们的健康。这类物质在人体中的水平被认为是评估健康暴露风险的重要因素,因此,建立高效、可靠、选择性好的分析方法十分必要。金属离子特异性DNAzyme合成过程简单、成本低,与蛋白质酶和核酶相比,优势明显。此外,基于功能核酸材料的电化学生物传感器具有操作简单、分析快速等优势,已成为痕量目标物分析的重要手段,本论文以重金属铜离子和铅离子作为研究对象,将金属离子特异性DNAzyme引入电化学DNA传感器,结合多种信号放大策略极大地提高了方法的灵敏度,实现了对金属离子的超灵敏、快速分析,为环境中重金属离子的痕量检测提供了新思路。主要研究内容如下:(1)以铜离子特异性DNAzyme为识别元件构建了一种新型电化学传感器,用于人体血清中铜离子的超灵敏分析。在该研究中,DNA四面体结构(TDN)修饰在电极表面作为捕获探针,不仅可识别目标物还能调控相界面;同时,程序化CHA/HCR的信号放大策略和功能化磁珠MBs对目标物的纯化与富集作用,极大地提升了方法的灵敏度。在最优条件下,该传感器对铜离子的检测范围为1.0f M-0.2 p M,检测限为0.33 f M。其加标回收率为87.92%-111.61%(RSD=4.89%-8.85%)。方法良好的选择性、重现性、准确性和稳定性表明其广阔的应用前景。(2)为进一步提高传感器的灵敏度,合成多重DNA四面体纳米结构,并以此作为信号放大元件以负载更多的信号分子。在该方法的检测过程中,DNAzyme-MNP系统可实现目标物的提纯和信号放大,该系统的引入不仅降低了假阳性信号,而且提高了该传感器的灵敏度;同时,结合CHA反应,该传感器实现了三重信号放大,极大地提高反应灵敏度;在最优条件下,该方法的检测限低至0.033 p M,检测范围为0.1 p M-500 n M。另外,通过优化检测步骤,该方法在检测时间方面具有明显优势,为其广泛应用提供了可能。(3)为提高实际样品分析效率,基于铜离子和铅离子特异性DNAzyme,分别使用嵌入式亚甲基蓝和氯化六铵合钌作为信号分子,开发了一种用于同时检测铜离子和铅离子的新型电化学DNA传感器。为进一步缩短检测时间,本传感器在简化操作步骤上做了如下改进:简化电极上的反应、信号分子直接嵌入到TDN中以减少滴加信号分子的时间。由于DNAzyme的高选择性,该传感器可以实现对铜离子和铅离子两种目标物的同时检测。在最优条件下,该传感器对铜离子的检测限为0.017 p M,检测范围为0.05 p M-100 n M;对铅离子的检测限为0.17 p M,检测范围为0.5 p M-100 n M。经验证,该方法的加标回收实[1]验结果良好,表明其在实际样品中铜离子和铅离子的同时检测方面具有较高的准确性和稳定性。
其他文献
缸内直喷汽油机(GDI)因为功率高,油耗低而成为重要的车用动力,但是其颗粒物排放问题比传统的进气道喷射汽油机(PFI)更加严重。随着排放法规对汽油机排放物中颗粒物的要求日益严苛,在排气管上安装汽油机颗粒捕集器(GPF)/催化型汽油机颗粒捕集器(CGPF)已成为如今减少缸内颗粒排放物的有效技术,仍需要通过定期再生将捕获的颗粒物燃烧清除,避免颗粒物影响自身的工作性能与使用寿命。但在再生过程中会生成无法
学位
由于人类社会发展带来的一系列问题诸如能源稀缺和生态恶化愈发严峻,因此探索无毒、低价的高性能热电材料对于问题的解决具有重大意义。类金刚石结构化合物是一类具有扭曲四面体结构的化合物,它由二元闪锌矿结构通过“八隅规则”演变而来,其中Cu3Sb X4因具有本征窄带隙、低热导率、原料无毒、储量丰富等特点而备受青睐。目前,中温区Cu3SbSe4热电材料已被广泛报道,但硒的价格劣势使其无法量产。相比之下,硫取代
学位
氢能源是当今世界重要的清洁能源。其中,电解水制氢是氢能源制备的重要方法之一。但是,由于其低转化效率,高能耗的缺点严重制约了其大规模工业化应用。因此,开发新型高效廉价催化剂来提高电催化析氢效率是当前氢能源应用领域的一个重要研究方向。本论文基于富勒烯独特的笼状中空结构及其特有的物理化学特性,通过第一性原理计算,系统研究了内嵌金属钪富勒烯和内嵌单金属钪硼氮富勒烯电催化析氢性能和理论机制,探索了内嵌金属富
学位
传统能源的日益消耗及生态环境的逐渐恶化使得新能源技术已成为当代社会可持续发展的重要方向。其中,管状直接乙醇燃料电池(Tubular direct ethanol fuel cell,DEFC)以乙醇溶液作为阳极反应液,采用新型管状设计替代昂贵的双极板结构,具有能量密度高、环境污染低、制造成本少等优点,在未来的便携式能源设备中具有广阔的应用前景。同时,DEFC中仍存在诸多问题,阴极侧的“水淹”、乙醇
学位
传统充气轮胎由于具有良好的承载和减振性能,被广泛应用于乘用车领域,但其在高温高压下容易爆胎的弊端,对驾乘人员的人身安全带来了极大的威胁。免充气轮胎由于采用了特殊的结构和材料,从根本上消除了爆胎的危险,大幅提升了车辆的行驶安全性。但相较于传统充气轮胎,免充气轮胎的质量和径向刚度都有所增加,给车辆垂向动力学性能带来了负面影响。混合电磁悬架系统由于具有响应速度快、可靠性高等优点,通过设计合理的控制策略,
学位
随着政府对新能源汽车的大力推广,电动汽车的销量开始逐年增加,而永磁同步电机具有结构简单、运行可靠和工作效率高等优点,被广泛应用于电动汽车的驱动电机。但对于车用永磁同步电机来说,由于谐波磁场和电流相互作用所引起的电磁噪声的频率大部分处于人耳敏感的频段范围内,容易导致车内驾驶员或乘客的主观烦躁度较高,但目前对于永磁同步电机NVH的研究多以A计权声压级作为评价指标,鲜有对电机声品质进行研究。所以本文以电
学位
随着化石燃料储量的枯竭和空气污染的加剧,电动汽车因其低排放和高能效而成为目前各车企的发展重点。锂离子电池因其具有电池电压高、能量密度高、使用寿命长、记忆效应低、自放电低和重量轻等优点,而被认为是电动汽车最佳的动力源。电池安全高效地运行需要准确估计锂离子电池的状态,为此提出了一种基于电化学模型的电池状态估计方法,并考虑了环境温度对电池模型中参数的影响以提高估计方法的鲁棒性。论文的主要研究内容如下:1
学位
本文是在国家自然科学基金[项目编号51979127]与国家重点研发计划[项目编号2020YFC1512405]的资助下看展工作的。离心泵作为一种使用最为广泛的流体传输装置,据相关部门统计,离心泵耗电量约占我国每年总耗电量的10%,耗电量占比十分巨大。因此提高离心泵的工作效率就有利于实现国家节能减排的目标。离心泵叶轮是其核心过流部件,叶轮设计的好坏影响着离心泵内部流动状况也就决定了离心泵的效率高低,
学位
近年来传感器精度、控制器性能不断提高,环境感知、人工智能和整车控制等相关领域研究的不断深入,为自动驾驶技术的发展提供了良好的软硬件基础。作为自动驾驶中最早进入应用的核心技术之一,自动泊车受到了众多汽车厂商与研究人员的关注。本文分析影响自动泊车性能的非线性因素,研究非线性因素影响下的位姿精确估计、路径跟踪控制方案。通过数据驱动建模,提高多种非线性因素影响下模型的准确度;构建考虑泊车效率、安全性和平稳
学位
近年来,入侵植物介导的生物入侵导致的环境生态问题日益凸显,特别是入侵植物可以显著影响本地生态系统的结构和功能,如明显改变本地群落组成、显著降低本地生物多样性等,因此,阐明入侵植物成功入侵的关键机理,乃当前入侵生态学领域倍受关注的重大前沿科学问题之一。更为重要的是,一种入侵植物成功入侵后可通过影响微环境条件,进而利于其它入侵植物的成功入侵,从而形成两种甚至是两种以上入侵植物在同一生境共同入侵(也称入
学位