【摘 要】
:
铸造业是机械工业的基础,也是国民经济重要的基础之一。铸造涂料作为一种重要的造型材料,是涂敷于铸型表面,在金属液浇注时起到隔离金属液和铸型的作用,因铸造涂料与金属液直接接触,主要起到防止铸件表面粘砂,保证铸件表面光洁度等作用。铸造涂料的质量的优劣直接决定铸件的质量,因此,铸造涂料逐渐引起人们的重视。目前,广泛使用的铸造涂料主要是浆状或膏状涂料,浆状或膏状涂料在使用前只需要添加少量载液或者不添加即可用
论文部分内容阅读
铸造业是机械工业的基础,也是国民经济重要的基础之一。铸造涂料作为一种重要的造型材料,是涂敷于铸型表面,在金属液浇注时起到隔离金属液和铸型的作用,因铸造涂料与金属液直接接触,主要起到防止铸件表面粘砂,保证铸件表面光洁度等作用。铸造涂料的质量的优劣直接决定铸件的质量,因此,铸造涂料逐渐引起人们的重视。目前,广泛使用的铸造涂料主要是浆状或膏状涂料,浆状或膏状涂料在使用前只需要添加少量载液或者不添加即可用于施涂,具有使用方便的优点,但是,因浆状和膏状涂料中含有大量载液,特别是醇基涂料,存在运输成本高,运输和储存不安全的问题,并且浆状或膏状醇基涂料在运输和存放的过程中容易出现耐火骨料和载液分离,长时间放置容易出现“死沉淀”的现象而导致涂料的报废。而粉状涂料因不含或者含有较少的载液,大大降低运输成本,并且具有运输和储存安全,使用时现配现用,不会因长时间放置而导致涂料的失效。因此,粉状涂料得到铸造厂的青睐。但是,由于粉状涂料需要现配现用,要求粉状涂料在添加载液后经过简单搅拌就需要具备良好的性能,因此对粉状涂料要求远高于浆状或膏状涂料,特别是醇基粉状涂料,因悬浮性难以提升而未能被广泛使用。因此,需要一种低成本高性能的醇基粉状涂料来突破目前粉状涂料发展瓶颈,从而推广醇基粉状涂料的使用。而流涂涂料因其能够高效的施涂在铸型表面,具有施涂效率高的优点,流涂工艺在国内已经得到了普遍的应用。本文对铸造涂料的悬浮剂成分及制备工艺,耐火骨料的成分,粘结剂的含量及粉状涂料的制备工艺进行研究,从而得到一种适用于铸铁件的高性能低成本醇基粉状流涂涂料。具体结论如下:(1)发明了一种新型的粉状铸铁流涂涂料,其具有运输安全,成本低,流平性好,悬浮性高,抗粘砂性能好等优点。其悬浮剂配方为SN悬浮剂:锂基膨润土=3:7,预处理工艺为SN悬浮剂:某材料=1:1,锂基膨润土:某材料=1:2。(2)最终确定粉状涂料配方中耐火骨料:鳞片石墨10~20%、土状石墨30~40%、石英粉35%、铁红3~5%;悬浮剂占耐火骨料的比例:SN悬浮剂1.5%;锂基膨润土3.5%;粘结剂占耐火骨料的比例:树脂1.5%、松香0.5%、PVB0.4%。(3)粉状涂料在制备时,需要将悬浮剂和其余粉料分开制备。稀释时,将悬浮剂添加载液搅拌均匀后,加入其余粉料,待搅拌均匀后即可现场施涂。(4)在最佳粉状涂料的配方下,结合最佳的粉状涂料制备和稀释工艺,最终得到粉状涂料最佳性能如下:密度1.10g/ml、2h悬浮性100%、24h悬浮性93%、滴淌性0.93g、流平性130mm、强度53.2g、粘度6.3s、抗起泡性8级。(5)粉状涂料应用于中型铸件现场验证,自制粉状涂料具有良好的抗粘砂性能,具备烧结易剥离的特性,达到商品涂料的使用效果。
其他文献
现代轨道交通运输的快速发展导致车载重量、运载密度和运行速度大幅度提高,使得车辆与轨道、桥梁等结构的服役环境愈加恶劣,因此开展列车-桥梁耦合系统动力学与可靠性分析显得异常重要。列车-桥梁耦合振动系统的参数具有随机不确定性,轨道不平顺等随机激励也进一步加剧了系统振动响应的随机性。因此,本文综合考虑列车-桥梁耦合振动系统模型参数和载荷激励的随机性,开展了系统耦合不确定性动力学建模与分析研究,获取不同服役
硼化钛(TiB2)陶瓷由于具有优良的导电性和不与铝(Al)液及冰晶石反应的特点,可用作铝电解槽的阴极材料。但由于没有高性能、工艺简单、低成本的TiB2陶瓷制备技术,TiB2陶瓷材料并没有在工业铝电解槽阴极上获得应用。本文针对这一问题,基于真空熔融渗Si法,研究开发了一种工艺简单、成本低和性能稳定的TiB2复合材料制备新工艺。论文基于真空熔融渗Si法制备出导电性能较好的TiB2复合材料,并通过在复合
随着石油天然气等开发工业的深入发展,油气井的开采深度越来越深,所面临的地质条件越来越复杂,对在油井中起关键作用的石油套管的要求也越来越特殊和苛刻,当前API钢级石油套管的强度与韧性等性能指标已难以满足需求。因此,对生产非API钢级既具有高强度还具有高韧性石油套管工艺的开发变得尤为重要。热轧无缝钢管在线控制冷却技术有利于实现初次组织的调控,进而提升套管强韧性。本文结合与宝钢合作开展的热轧无缝钢管控制
目前,高温结构材料和相关的制备技术越来越重要,新型高温结构材料及其焊接技术已经成为发展新型航空发动机等领域的关键。金属间化合物高温合金是未来高温结构材料的发展趋势之一。本文拟针对一种新型Ni3Al单晶高温合金的专用焊接材料及其工艺开展研究,实现该合金的优质连接,选题具有重要创新性和工程应用价值。基于此背景,本文的主要工作内容与成果如下:(1)本文首先基于母材合金的成分特点,以Si和B为降熔点元素设
铁基非晶合金具有特殊的原子结构特点,从而使其某些软磁性能明显优于传统晶态合金,一直被视为新材料开发的重点。铁基非晶合金作为高性能软磁材料被广泛应用于电力电子行业,极大地提升了磁性制品的产品性能,使磁性产品朝着更加小型化和节能化的趋势发展。但铁基非晶合金的饱和磁感应强度(Bs)和非晶形成能力限制了其在工业生产上的使用范围,在高精尖领域对于高性能材料的需求十分迫切,因此提高铁基非晶合金的饱和磁感应强度
重型H型钢相较普通热轧H型钢具有更大的尺寸和厚度,常规的控冷工艺难以保证产品性能,以超快速冷却技术为基础的QST(在线淬火-自回火)工艺为重型H型钢轧后冷却提供了解决方案。本课题为开发不同翼缘厚度重型H型钢产品QST冷却工艺,采用有限元模拟和实验相结合的手段展开研究。研究工作包括:(1)利用有限元分析软件,对40mm厚、60mm厚、115mm厚三种翼缘厚度重型H型钢进行不同QST工艺下温度场模拟分
微/纳尺度金属基复合材料在电子封装、汽车及航空航天等领域具有潜在的应用价值和理论研究意义。本论文工作采用电沉积技术,通过改变电流波形、搅拌方式、电流密度、沉积时间等工艺参数,成功地制备了还原氧化石墨烯/铜(RGO/Cu)复合材料和具有不同层结构的镍层状复合材料。研究了工艺参数对于RGO在Cu基体内的分布、晶粒尺寸、晶体取向的影响规律以及对所制备材料拉伸性能的影响;此外,通过改变电沉积工艺,制备了不
随着汽车工业的发展,汽车的轻量化逐渐成为时代的主题,具有高强塑积的第三代先进高强钢受到广泛的关注,而中锰钢是其中的热点话题之一。中Mn钢退火组织通常由铁素体和残余奥氏体组成,应变过程中,残余奥氏体通过发生马氏体相变来缓解局部的应力集中,进而推迟裂纹的萌生,即应变诱导马氏体相变,相变诱导塑性增加的过程。中Mn钢以其优良的综合性能,成为国内外学者研究的焦点,以望其在汽车结构中得以广泛应用。本文基于传统
目前管线钢焊接的主要工艺(埋弧焊、手工电弧焊、气体保护焊等)虽能得到较为理想的焊接接头,但高热输入条件会导致焊接接头产生软化和脆化现象,阻碍了管线钢的进一步发展。冷金属过渡焊接工艺(Cold Metal Transfer,CMT)具有焊接热输入低、焊接稳定性好等特点。磁控焊接技术能够提升熔池金属的润湿性,降低焊接接头缺陷的同时细化焊缝晶粒,使焊接接头获得良好的力学性能。将CMT工艺及磁控焊接技术引
发展以金属-空气电池为代表的新型能源转换装置是缓解能源危机的有效手段,而开发廉价、高效、稳定的ORR/OER双功能催化剂是金属-空气电池发展的关键问题之一。碳包覆过渡金属催化材料由于其独特的结构和性质被认为是最具潜力的OER/ORR双功能催化剂。但目前碳包覆过渡金属材料仍面临制备工艺复杂、催化活性较低等问题。针对这些问题,本文提出了高效普适的方式制备碳包覆纳米材料,并通过进一步优化材料组分,提高了