地海目标可见光高光谱成像研究

来源 :西安电子科技大学 | 被引量 : 0次 | 上传用户:FLASH920
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
高光谱技术的技术基础是全色成像和多光谱技术,自诞生以来在军事及民用领域都发挥了重要的作用。在军事领域,高光谱技术在光谱维上所能提供的数据容量比多光谱技术更大,能准确地从环境背景或伪装中识别军事目标。在民用方面,高光谱技术被广泛地应用到矿物识别,农业管理以及环境监测等领域。本文开展了星载探测地海目标高光谱成像链路中地面目标光学特性建模、海面光学特性建模、目标与背景的复合散射、大气衰减和大气路径辐射、传感器建模等关键技术的研究,建立了星载探测地海目标高光谱成像模型。首先在目标坐标系内计算目标与环境的复合散射特性,得到目标坐标系的光谱亮度图像,在光信号经过大气后,得到卫星入瞳处的光谱亮度图像,最后经过传感器的调制,获得传感器上的高光谱图像。利用该模型,分别研究了地面目标、海面目标以及地海目标高光谱成像的影响因素。搭建了起伏草地和草地公路复合两类地面模型,结合MOTDRAN的太阳辐照度数据和天空背景辐射数据完成了地面场景的建立,使用射线追踪方法基于双向反射分布函数对地面场景进行高光谱成像仿真;将立方体作为简单结构目标与地面模型结合进行成像仿真,得到高光谱辐亮度仿真图像,采取在图像中取参考点的方式,获取光谱辐亮度信息,根据参考点的光谱信息分析立方体与地面构成的二面角结构对目标识别造成的影响。以卡车和坦克作为复杂目标,起伏地面作为地面背景,对复杂目标与地面场景进行了高光谱成像仿真,分析目标类型,地面材质,观测天顶角和太阳天顶角对成像造成的影响。基于Elfouhaily海浪谱和线型滤波法分别建立了风速为2m/s,4m/s,6m/s下的海面模型,分析了风速变化对海面光谱特性和成像仿真的影响。参考美军巡洋舰建立了舰船目标模型,构建了海面与舰船场景,研究了风速,太阳天顶角对海面与舰船场景高光谱成像造成的影响首先在地表的目标坐标系内获得高光谱亮度图像,在地表到卫星这一路径中考虑大气传输过程中的影响,获得目标坐标系下的图像,最后经过卫星传感器获得最终的高光谱图像,分析了这一过程中光谱辐亮度曲线变化和图像变化对目标识别造成的影响。按照空间分辨率和光谱分辨率由低到高的顺序,得到了地面与卡车场景以及海面与舰船场景的高光谱图像,研究了空间分辨率和光谱分辨率对地海目标高光谱成像质量的影响。
其他文献
图像分类领域中,对抗样本(Adversarial Examples,AEs)通常是指一种与目标分类器的原输入图像仅有微小差别的图像,但却能显著扰乱该分类器的输出结果。研究表明,相当部分的经典深度图像分类网络都存在大量的对抗样本,并极易受到对抗攻击,从而产生安全漏洞。随着深度神经网络和硬件计算能力的不断发展,深度学习已广泛地存在于各个实际领域。然而对抗样本的存在表明,许多深度神经网络并不鲁棒可靠,针
现如今,云计算在计算机和互联网领域扮演着越来越重要的角色,而存储作为云计算中比较重要的一环,如何管理和使用存储成了该环节中一个比较重要的问题。作为云计算领域的热门组件,OpenStack在该领域中有着不可或缺的地位,其内部组件Cinder更是在云磁盘管理方面发挥了重要作用。因此,如何设计并实现一个稳定高可用的云管控平台的磁盘管理系统是管理和使用好云存储的关键。基于以上背景,本文设计并实现了一个基于
随着相控阵天线集成度的日益提高,高热流密度和狭小散热空间导致的散热问题也日益凸显。目前有源相控阵天线主要采用液冷系统进行散热,液冷系统的设计重点主要表现在三个方面:一是控制发热元件最高温度避免元件的烧毁;二是使T/R组件内芯片温度保持一致保证天线的整体电性能;三是满足天线的结构约束。拓扑优化方法可以根据天线系统的热源分布与结构约束改变流道结构的拓扑关系,是提高有源相控阵天线液冷系统散热能力最有前途
合成孔径雷达(SAR)是一种高分辨率成像雷达,具有可全天时持续性探测目标的特性,并且不受天气等外界因素影响,是当前探测技术中极其重要的电子设备。另一方面,SAR可以穿透表面的遮挡物,深入探测目标内部的信息,能够实时监测农业作物与自然灾害情况。SAR经常搭载在飞机、卫星等移动平台上,它可以收集大范围场景数据。针对远距离目标,它同样能够保证成像的高分辨率,所获图像能够帮助解决军事侦查以及民用领域的诸多
随着大规模集成电路的发展和工艺尺寸的持续缩小使得物联网技术得到了蓬勃的发展,进而推动可穿戴设备、智能家居等诸多应用场景的快速发展。在这些场景下电子设备需要在保持正常功能的同时具有较高的能效以尽可能的延长使用的周期,然而大量用于采集模拟信号的无线传感器的应用将会造成整个系统功耗过大。模数转换器(Analog-to-Digital Converter,ADC)作为无线传感器中连接模拟输入信号和数字信号
自冯·诺依曼架构体系面世以来,处理器与内存一直被视为计算机系统的核心。系统将正运行的程序数据放入内存,需要时再从中读取,因此处理器与内存之间的数据传输速率直接决定了系统的性能。内存的硬件规格固然是影响传输速率的重要因素,但内存控制器在传输中的作用同样不可忽视。内存控制器作为处理器与内存之间传输数据的桥梁,不仅决定了系统所能使用的内存类型、内存频率、最大内存容量等重要参数,还控制着整个数据传输的过程
医学图像配准一直是医学影像处理系统中重要的处理环节,能够为后续的融合、重建等任务提供对齐的图像数据。由于医学图像具有极其复杂的组织结构,传统的基于特征等配准方法已无法满足现代医学图像配准对于实时可形变变换的要求,深度学习的快速发展为医学图像配准问题提供了新的解决办法。现有的基于深度学习的医学图像配准方法大多使用深度网络预测单向的配准结果,这一类方法并不能保持原图的拓扑结构;其中一些方法计算双向变形
学位
“十四五”规划提名集成电路,重点攻关碳化硅、氮化镓等宽禁带半导体。相比于Si和Ga As,碳化硅(SiC)材料同时具有宽的禁带(3~3.3e V)、高的击穿电场(2.5~5MV/cm)、高电子漂移速度(2×107cm/s)和高热导率(4.5~4.9W/cm℃)等优势,由SiC制备的器件体积小巧却功能强大。碳化硅外延晶圆是制备碳化硅功率器件的基础,本文采用aixtron最新一代G5 WW设备,基于T
氮化镓(GaN)是第三代半导体材料的典型代表,也是近年来研究的热点。与传统的Si材料相比,其饱和漂移速度高、禁带宽度大、临界击穿场强高、抗辐照特性强。由于其优异的特性,被广泛用于高频大功率领域。随着技术的发展,器件的工作电压越来越高。而器件在高电压情况下,其电学特性发生较大的退化,严重限制了GaN基HEMT器件的发展。因此对GaN基HEMT器件高场应力可靠性进行研究具有非常重要的意义。本文将结合直