舒巴坦对全脑缺血大鼠海马CAI区GLT-1结合特性、谷氨酸摄取及谷氨酸浓度的影响

来源 :河北医科大学 | 被引量 : 1次 | 上传用户:liyang3d
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
谷氨酸(Glu)是中枢神经系统中最广泛的神经递质,广泛参与中枢神经系统生理功能的调节。谷氨酸能神经元受到刺激去极化后将谷氨酸释放到突触间隙中,其浓度由几微摩尔瞬时升高至几毫摩尔,激活谷氨酸受体,从而发挥生理功能。在某些病理条件下,突触间隙内谷氨酸浓度异常升高,过度激活突触后膜的离子型和代谢型谷氨酸受体,引起大量Ca2+及Na+离子内流,触发并激活细胞内的信号级联反应,启动一系列病理反应过程,神经元膜结构破坏,细胞内成分的释放,局部炎性反应性水肿甚至坏死或者凋亡,引起谷氨酸的兴奋性毒性作用。  由于突触间隙内没有分解谷氨酸的代谢酶,突触间隙内的谷氨酸由谷氨酸转运体从突触间隙中清除。在所有类型的谷氨酸转运蛋白中,胶质细胞谷氨酸转运体-1(glial glutamate transporter,GLT-1)清除皮质和海马中释放的大部分谷氨酸。在海马中表达的大约80%的谷氨酸转运蛋白是GLT-1。鉴于谷氨酸的兴奋性毒性作用在脑细胞缺血缺氧性损害中的重要作用,提高谷氨酸转运体清除谷氨酸的能力,即增加GLT-1的表达及功能可作为治疗脑缺血性疾病的靶点。  研究发现,用β-内酰胺类抗生素,如头孢曲松钠可上调GLT-1的表达和摄取活性。我室以往研究也表明,头孢曲松钠可通过上调GLT-1的表达发挥抗全脑缺血的神经保护作用。这些研究虽然证实了头孢曲松钠的神经保护作用,但是其作为一线强效抗生素,长期大量使用会导致诸如菌群失调、细菌耐药等许多副作用,这些副作用严重限制其作为抗脑缺血性损伤药物的应用。舒巴坦(sulbactam)属于非典型β-内酰胺类抗生素,与头孢曲松钠结构相似,具有β-内酰胺环,但抗菌作用非常弱,临床上一般将其作为β-内酰胺类抗生素的增效剂,与其它β-内酰胺类抗生素合用以增强抗菌效果。鉴于舒巴坦与头孢曲松钠结构的相似性,舒巴坦有可能通过上调GLT-1的表达和功能而发挥与头孢曲松钠类似的神经保护作用;同时,考虑到舒巴坦几乎无抗菌作用,不会产生菌群失调等副作用,我室针对舒巴坦的抗脑缺血作用展开了一系列的研究,证实舒巴坦也可通过上调GLT-1的表达发挥抗缺血性脑损伤作用。但是,在这一过程中,舒巴坦对于GLT-1的功能,包括其与谷氨酸的结合特性和对谷氨酸的摄取能力是否发生变化?这些变化对脑缺血时脑细胞外液谷氨酸浓度是否产生影响等,尚未阐明。  因此,本研究采用全脑缺血再灌注模型大鼠,应用放射性配基结合方法(L-3H-glutamate标记法),观察舒巴坦对全脑缺血大鼠海马GLT-1结合特性及其对谷氨酸摄取的影响。在此基础上,应用微透析及高效液相联合质谱法,观察GLT-1的上述变化对脑组织细胞外液谷氨酸浓度的影响,为阐明GLT-1在舒巴坦发挥抗缺血性脑损伤作用提供进一步的实验依据,同时也为临床上脑缺血性疾病的防治研究提供新的线索和思路。  第一部分 舒巴坦对全脑缺血大鼠海马CA1区GLT-1结合特性的影响  目的:观察舒巴坦在抗全脑缺血过程中,对GLT-1的结合特性,包括最大结合量和亲和力的影响,探讨舒巴坦对GLT-1功能的影响。  方法:应用神经病理学评价方法,在确定舒巴坦发挥抗全脑缺血、发挥神经保护作用的基础上,应用 3H标记的谷氨酸(L-3H-glutamate)进行放射性配基结合实验,观察确定这一过程中GLT-1的结合特性的变化。  将Wistar大鼠随机分为以下7组,每组11只。6只用于GLT-1结合特性的测定,5只用于神经病理学评价。  1. Sham对照组:给大鼠侧脑室注射舒巴坦的溶剂生理盐水(normal saline,NS)10 μl,连续注射5 d,于末次注射后24 h行全脑缺血的sham手术。  2. 全脑缺血组(Brain ischemia):给大鼠侧脑室注射舒巴坦的溶剂NS 10 μl,连续注射5 d,于末次注射后24 h行全脑缺血处理(8 min,以下同),之后恢复脑血液再灌流。  3. 舒巴坦对照组(Sulbactam control):给大鼠侧脑室注射舒巴坦溶液10 μl(180 nmol,以下同),连续注射5 d,于末次注射后24 h行全脑缺血的sham手术。根据我室崔鑫等的研究,选择舒巴坦侧脑室注射的有效剂量180 nmol。  4. 舒巴坦预防组(Sulbactam prevention):给大鼠侧脑室注射舒巴坦溶液10 μl,连续注射5 d,于末次注射后24 h行全脑缺血处理,之后恢复脑血液再灌流。  5. 舒巴坦预防+GLT-1 AS-ODNs 组(Sulbactam prevention+ AS-ODNs):在舒巴坦预防组的基础上,于第一次注射舒巴坦后36 h、72 h以及全脑缺血处理前12 h右侧脑室注射GLT-1 AS-ODNs双蒸水溶液10 μl (18 nmol );其它同全脑缺血组。同时设R-ODNs 对照组(Sulbactam prevention+R-ODNs),以R-ODNs(18 nmol)代替 AS-ODNs,其它同舒巴坦预防组+GLT-1 AS-ODNs组。  6. GLT-1 AS-ODNs对照组(AS-ODNs control):在sham组基础上,于第一次注射舒巴坦的溶剂后36 h、72 h以及全脑缺血sham手术前12 h右侧脑室注射GLT-1 AS-ODNs溶液10 μl(18 nmol),其它同sham组。  各组大鼠于规定时间点,即:全脑缺血后即刻、6h、12h、1d、2d、3 d取材用于GLT-1结合特性的测定,7 d取材用于脑组织病理学评价。采用放射性配基结合法测定GLT-1的结合特性,包括最大结合量(Bmax值)和亲和力(Kd值)。Bmax值越大,GLT-1的数量越多;Kd值越小,GLT-1的亲和力越高。  结果:  1. Bmax值的变化  与 sham 组相比,舒巴坦对照组中各时间点 Bmax 值明显升高(P<0.05),而在GLT-1 AS-ODNs对照组中则明显降低(P<0.05)。  全脑缺血组大鼠在8 min缺血打击后,与缺血后即刻时间点相比较,Bmax值呈现下降趋势,48 h-72 h下降加剧,在本实验检测时间段内于3 d (72 h)时降至最低(P<0.05 vs 0 h、6 h);与sham组相比较,各个时间点的Bmax值均明显降低(P<0.05)。  舒巴坦预防组中,与缺血后即刻时间点相比较,随着缺血后时间延长,缺血后6 h、12 h、24 h Bmax值逐渐降低(P<0.05,vs 0 h),其后Bmax值逐步回升,72 h时间点Bmax值与24 h时间点相比明显上升(P<0.05);与全脑缺血组相比,舒巴坦预防组各时间点Bmax值均明显增加(P<0.05)。  舒巴坦预防+GLT-1 AS-ODNs组中,与缺血后即刻时间点相比较,随着缺血后时间的延长,各时间点Bmax值逐渐降低(P<0.05,vs 0 h);与舒巴坦预防组相比,各时间点Bmax值均明显下降(P<0.05),表明舒巴坦通过上调GLT-1并增加Bmax的作用被GLT-1 AS-ODNs抑制,而舒巴坦预防+GLT-1 R-ODNs组Bmax值的变化与舒巴坦预防组相比较无显著性变化(P>0.05)。  2. Kd值的变化  与sham组相比,舒巴坦对照组和GLT-1 AS-ODNs对照组各个时间点的Kd值均无显著性变化(P>0.05)。  全脑缺血组中,与缺血后即刻时间点相比,各个时间点Kd值呈现明显上升的趋势,于24 h-48 h升高最明显;与sham组相比,各个时间点的Kd值均明显升高(P<0.05)。  舒巴坦预防组中,与缺血后即刻时间点相比,各时间点Kd值变化趋势与全脑缺血组一致;与全脑缺血组相比,各时间点的Kd值均显著降低(P<0.05)。  在舒巴坦预防+GLT-1 AS-ODNs组中,与缺血后即刻时间点相比,各时间点Kd值无明显变化;与舒巴坦预防组相比,各时间点Kd值均明显升高(P<0.05)。而舒巴坦预防+GLT-1 R-ODNs组与舒巴坦预防组Kd值无差异。  3. 神经病理学评价结果  Sham组大鼠海马CA1区锥体细胞形态完整,无细胞缺失,并且排列整齐,层次分明。胞核大而圆,位于细胞中央,核仁清晰,尼氏体丰富。舒巴坦对照组大鼠海马CA1区锥体细胞组织形态与sham组基本一致。  在全脑缺血组中,海马CA1区锥体细胞稀疏无层次感,排列紊乱,可见大量细胞碎片,并且出现了明显的神经元缺失,组织学分级显著升高(P<0.05),神经元密度显著下降(P<0.05)。舒巴坦预防组海马CA1区锥体细胞损伤不明显,其组织细胞形态与全脑缺血组相比明显好转,更接近sham组。与全脑缺血组相比,组织学分级明显降低(P<0.05),神经元密度显著升高(P<0.05),表明舒巴坦具有抗全脑缺血引起的迟发性神经元死亡的作用。  舒巴坦预防+GLT-1 AS-ODNs组海马CA1区组织细胞细胞形态与全脑缺血组类似,也出现了细胞肿胀,崩解,碎片化及核固缩。与舒巴坦预防组相比,其组织学分级显著升高(P<0.05 ),神经元密度明显下降(P<0.05),表明GLT-1 AS-ODNs抑制了GLT-1表达从而减弱了舒巴坦对海马CA1区锥体神经元的保护作用;GLT-1 AS-ODNs对照组大鼠海马CA1区组织形态与sham组基本一致,表明侧脑室注射GLT-1 AS-ODNs不会对海马CA1区神经元产生损伤。舒巴坦预防+GLT-1 R-ODNs对照组与舒巴坦预防组大鼠海马CA1区组织形态基本一致。以上结果显示:侧脑室注射GLT-1 AS-ODNs可以抑制舒巴坦的抗脑缺血损伤的神经保护作用。  小结:以上结果表明,舒巴坦可以改善全脑缺血大鼠GLT-1的最大结合容量并增强其与谷氨酸的亲和力。  第二部分 舒巴坦对全脑缺血大鼠海马CA1区GLT-1摄取谷氨酸的影响  目的:采用大鼠全脑缺血再灌注模型,观察舒巴坦对脑缺血大鼠海马CA1区GLT-1摄取谷氨酸的影响,探讨舒巴坦对GLT-1功能的影响。  方法:实验动物及分组同第一部分。  各组大鼠于规定时间点,即全脑缺血后即刻、6h、12h、1d、2d、3 d取材,制备细胞悬液,使用 3H标记的谷氨酸(L-3H-glutamate)测定海马CA1区细胞对谷氨酸的摄取。GLT-1的谷氨酸摄取量等于总摄取量减去非特异性摄取量。用于病理组织学观察的标本于7d时取材固定。  结果:  1. 摄取率变化  与sham组相比,舒巴坦对照组中GLT-1对谷氨酸的摄取明显增加(P<0.05);GLT-1 AS-ODNs对照组中,GLT-1对谷氨酸摄取有一定程度减少(P<0.05),说明GLT-1 AS-ODNs可通过抑制GLT-1的表达减少GLT-1对谷氨酸的摄取。  全脑缺血组谷氨酸的摄取率呈现下降趋势,在本实验中72 h降到最低(P<0.05,vs 0 h)。与sham组相比,随着缺血后时间的延长,摄取率逐渐下降(P<0.05)。  舒巴坦预防组中,0 h、6 h、12 h、24 h时间点的摄取率虽无明显变化,但有下降趋势,到48 h-72 h时间点,其谷氨酸摄取率明显升高,到72 h时摄取率已明显高于24 h(P<0.05,vs 24 h);该组与全脑缺血组相比,GLT-1对谷氨酸摄取在各个时间点均明显增加(P<0.05)。  舒巴坦预防+GLT-1 AS-ODNs组GLT-1对谷氨酸的摄取明显降低,并且在48 h-72 h时间段内仍在下降(P<0.05,vs 0 h);与舒巴坦预防组相比,GLT-1对谷氨酸的摄取显著降低(P<0.05)。舒巴坦预防+R-ODNs(18 nmol)组GLT-1对谷氨酸的摄取率的变化趋势与舒巴坦预防组基本一致,各时间点摄取率无明显变化。  2. 神经病理学评价结果  同第一部分结果。  3. 预防性给予舒巴坦可以有效减轻大鼠海马CA1区锥体神经元的迟发性神经元死亡,并且明显增强大鼠海马CA1区GLT-1对谷氨酸的摄取。而应用GLT-1 AS-ODNs可明显抑制舒巴坦对全脑缺血大鼠神经元的保护作用。  小结:这些结果表明舒巴坦可以增加全脑缺血大鼠GLT-1对谷氨酸的摄取。  第三部分 舒巴坦对全脑缺血大鼠海马CA1区谷氨酸浓度的影响  目的:应用大鼠全脑缺血模型,观察舒巴坦对海马CA1区脑微透析液中谷氨酸浓度的影响,进一步探讨舒巴坦抗脑缺血性损伤作用的机制。  方法:实验动物及分组同第一部分。  各组均于全脑缺血前3h开始脑内微透析,采集微透析样品用于高效液相联合质谱仪进行分析,观察微透析液中谷氨酸浓度的变化;全脑缺血后7d取材进行脑组织病理学评价。  结果:  1. 氨基酸的分离情况。  在本实验条件下,谷氨酸与内标在6 min内均得以分离,其出峰时间分别为:Asp 1.41 min、Glu 1.50 min、Nor 5.25 min,三种氨基酸峰形良好,无重合、双峰、拖尾等现象(Fig.1)。海马透析液样品中的其他杂峰亦可与待测氨基酸完全分离。  2. 谷氨酸浓度的变化  Sham 组脑微透析液中谷氨酸浓度处于较低水平,约 2.25± 0.361μmol/L,各时间点无明显变化。与sham组相比,舒巴坦对照组脑微透析液中谷氨酸浓度无明显变化。  在全脑缺血组中,大鼠海马CA1区谷氨酸浓度出现了明显的升高。在缺血一开始就迅速出现升高,并且迅速升高至基础浓度的7.5倍左右,在恢复血流灌注后,于16 min左右恢复至基础水平。  在舒巴坦预防组,给予舒巴坦可明显抑制全脑缺血引起的脑内谷氨酸浓度升高,使其峰值降低到基础浓度的3倍左右,明显低于全脑缺血组(P<0.05)。  在舒巴坦预防+GLT-1 AS-ODNs组,谷氨酸浓度在全脑缺血后迅速升高,最高浓度为基础值的5.7倍,明显高于舒巴坦预防组(P<0.05),表明舒巴坦降低缺血时细胞间隙谷氨酸浓度升高的作用可以被 GLT-1 AS-ODNs明显抑制。而在舒巴坦预防+GLT-1 R-ODNs中却无此变化,说明本实验选择的GLT-1 AS-ODNs可有效的抑制GLT-1的表达及其对谷氨酸的摄取。  给sham组动物注射GLT-1 AS-ODNs组,可使其谷氨酸浓度稍有增高,与 sham 组比较有统计学差异(P<0.05 ),说明连续 3 次注射 GLT-1 AS-ODNs可有效的抑制GLT-1对谷氨酸的摄取。  3. 神经病理学评价  同第一部分结果。  小结:以上结果表明,舒巴坦可以降低脑缺血引起的细胞外谷氨酸浓度升高,从而降低其兴奋性神经毒性作用导致的迟发性神经元死亡。  结论:  1. 舒巴坦可以改善全脑缺血大鼠GLT-1的最大结合容量并增强其与谷氨酸的亲和力。  2. 舒巴坦能够明显增加全脑缺血大鼠海马CA1区GLT-1对谷氨酸的摄取。  3. 舒巴坦可以降低脑缺血引起的细胞外谷氨酸浓度升高,从而降低其兴奋性神经毒性作用。  以上结果表明,舒巴坦可以通过上调GLT-1的功能,降低全脑缺血大鼠海马CA1区谷氨酸浓度,进而发挥抗全脑缺血的神经保护作用。
其他文献
随着大数据技术的快速发展,大数据技术在高职院校的应用范围越来越广,对高职院校师生学习生活和学校信息化建设产生深刻影响。本文以大数据技术在高职院校的应用为主题,分析了当前高职院校大数据应用存在的问题,并对在高职院校发展建设中应用大数据技术的重要性进行了讲解。
近年来兴起的互动课堂、电子书包、VR教学等多媒体教学手段在全面推进"互联网+义务教育"的建设过程中发挥着重要作用。多媒体教学有效地提高了教学水平、提升了教育质量,大力推进了优质基础教育的均衡发展,因此进一步优化课堂信息化环境的需求势不容缓。基于全光的网络环境可以实现高带宽、低时延、配置灵活的接入能力,加快构建"互联网+义务教育"信息化的有效实施路径。以中国电信PON网络架构为基础,设计打造有效可行
C语言是学习程序设计的首选入门语言,其掌握程度将直接影响培养方案后续课程的开设效果。本题根据多年课程教学实践,指出该门课程在教学改革中存在一些误区,针对这些问题就如何提高教学效果提出一些建议,并将UBL理念培养模式结合到当前新的教学环境,对提高学生程序素养和学习兴趣有较大的帮助。
本文针对校园网络安全问题提出了人工智能的解决策略,如:网络的防火墙配置对策、基于用户权限的管理等。本文还通过人工智能来判断防火墙政策规则的新增、删除及规则顺序调整的动作,作为调整防火墙政策规则的参考,保持防火墙系统维持较佳状态。
只有Foursquare和其他以手机位置服务为平台的社交游戏掌握了那些我们每天都玩的数不清的社会游戏的精髓,它们才真正值得投入进去。    把消费行为变成一个游戏,以此刺激人们买东西,这是很老套的生意经了,比如集印花中大奖、常客飞行里程、用户积分都是用小游戏的手法来刺激消费者掏出更多银子的商业手段。但是,在GPS定位的智能手机得到普及,用户热衷于视频游戏的年代,这个商业技巧正在转向一种新的、蕴含着
随着信息技术、通信技术的快速发展,相关技术在教育领域之中发挥的作用逐步加大,并对实际的教学过程带来了巨大的影响。在技工院校中计算机课程是基础课程之一,在新的时代背景下,借助网络教学模式展开计算机课程教学对于促进这一学科的发展具有非常重要的意义。
网络安全课程对理论和应用都有很高的要求,在有限的时间内完成教学目标要求,对教和学都提出了挑战。这门课的许多任务复杂度高,学生独立完成难度很大。针对这类问题,基于任务驱动,教师在案例进行的每一个环节进行适度提示,起到引领的作用。教师从案例分析、方案设计,到实施,既给学生一定的启示,又留有独立思考的空间。教师在每个环节提示程度的把握,要综合考量学生的学业水平,以提升学生分析问题、解决问题的能力为目标。
本论文讨论了计算机专业学生网络在线教学过程中利用联机事务处理系统,实现多台计算机共享处理对象数据时,为了保证数据的一致性进行并行处理而提出的顺序控制处理的方法。根据多线程进行顺序内存访问,磁盘共享栅格系统中通过多数据库管理系统对数据存取的顺序化提出对应两种情况的解决方法。
随着信息安全问题的日益突出,高校信息中心面临着各种威胁。建设一套完整的灾备系统以保证系统的稳定性、业务的连接性和数据可用性已成为高校信息化建设面临的重要问题。但建设灾备数据中心需要投入大量的资金和人力资源,目前多数高校不具备建设灾备中心的条件。本文通过对几种基于云的灾备方式进行比较研究,发现云原生方案备份速度快,可靠性高,费用较低且对技术人员要求不高,可作为高校信息系统异地容灾备份的一种新选择。
随着市场经济的可持续发展,企业信息量在持续性的增多,企业就需要将计算机的主机和服务器作为其存储信息的基本工具,信息流通越来越重要,这也使得企业的内部网络安全性成为焦点。本文对企业内部网络安全管理系统的合理搭建进行分析,希望可以满足企业内部网络安全管理的要求,保证信息的安全性。