烟煤和兰炭混合燃烧特性及强化研究

来源 :昆明理工大学 | 被引量 : 0次 | 上传用户:yejing112
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为了降低燃料消耗,优化高炉效能,目前我国钢铁企业都采用高炉喷煤工艺进行炼铁,该工艺不仅可以降低高炉炼铁成本,还可以减轻在炼铁过程中对环境造成的污染。烟煤和无烟煤作为最主要的煤粉被应用于高炉喷煤中,随着无烟煤资源的匮乏,其价格不断在上升,因此亟需寻求一种的新的燃料来替代无烟煤。兰炭作为一种新型的炭素燃烧材料,由低阶煤块烧制而成,具有固定碳高、化学活性高和价格低等优点,燃烧后对环境所造成的污染很小,而且其燃烧性能与无烟煤很相似,在高炉喷吹中存在着巨大的市场发展潜力。然而,兰炭存在挥发性组分低、着火点高和燃尽比低等缺点,不能够作为单一喷吹燃料用于高炉中。针对以上的分析,本论文采用兰炭代替无烟煤,将烟煤与兰炭的混合煤粉作为喷吹煤粉进行燃烧实验,但是研究发现,随着兰炭配比量的增加,会导致混合煤粉的燃烧性能降低,影响高炉顺行,本研究通过向混合煤粉中加入一定量的助燃添加剂,在不降低混合煤粉的燃烧性能的前提下,尽可能的提高兰炭在混合煤粉中的使用量,达到有效的利用兰炭,降低高炉生铁成本的目的。本文首先采用热分析方法深入地研究了烟煤、无烟煤和兰炭三种煤粉单独燃烧时的燃烧特性,结果表明:烟煤的着火温度和燃尽温度最低,分别为517.72℃和695.03℃,最大燃烧速率最低,为9.90%/min,得到的综合燃烧特性指数也最低,为4.25×10-7,其燃烧性能最差;无烟煤的着火温度和燃尽温度分别为540.04℃和718.35℃,最大燃烧速率为10.64%/min,得到的综合燃烧特性指数最高,为4.65×10-7,其燃烧性能最好;兰炭的着火温度和燃尽温度最高,分别为564.36℃和736.91℃,但其最大燃烧速率最大,为11.62%/min,得到的综合燃烧特性指数为4.47×10-7,其燃烧性能略差于无烟煤。其次对烟煤与兰炭不同质量比的混合煤粉进行了热分析实验,以提供三种煤粉的冶炼厂目前所采用的混合喷吹煤粉(无烟煤:兰炭=1:1)的燃烧性能作为参照条件,得到以下结果:当兰炭与烟煤进行混合燃烧时,兰炭配比量为20%的混合煤粉燃烧性能最好,此时混合煤粉的着火温度和燃尽温度最低,分别为521.73℃和696.53℃,最大燃烧速率最大,为11.06%/min,得到的综合燃烧特性指数最高,为4.63×10-7;在不降低混合煤粉的燃烧性能的前提下,得到了兰炭最大配比量在25%,此时混合煤粉的着火温度、燃尽温度、最大燃烧速率温度和综合燃烧特性指数等燃烧特征参数都与混合煤粉(无烟煤:兰炭=1:1)的燃烧特征参数一致。研究了Fe2O3、La2O3两种添加剂分别对兰炭和烟煤的强化燃烧行为,主要结论如下:兰炭和烟煤的Fe2O3最佳添加量为2 wt%,而La2O3最佳添加量为1 wt%。当兰炭中加入2 wt%Fe2O3后,其着火温度最低,为552.33℃,燃尽温度最高,为739.67℃,最大燃烧速率最大,为11.88%/min,得到的综合燃烧特性指数最大,为4.83×10-7,其燃烧性能最好;当兰炭中加入1 wt%La2O3后,其着火温度和燃尽温度最低,分别为550.36℃和734.15℃,最大燃烧速率最大,为11.19%/min,得到的综合燃烧特性指数最大,为4.95×10-7,其燃烧性能最好。当烟煤中加入2 wt%Fe2O3后,着火温度为519.97℃,燃尽温度最高,为735.91℃,最大燃烧速率最大,为11.44%/min,得到的综合燃烧特性指数最大,为5.66×10-7,其燃烧性能最好;当烟煤中加入1 wt%的La2O3后,其着火温度518.47℃,燃尽温度最低,为650.89℃,最大燃烧速率最大,为13.16%/min,得到的综合燃烧特性指数最大,为7.48×10-7,其燃烧性能最好。综合可以得到La2O3比Fe2O3对兰炭和烟煤的助燃效果要更优异。在此基础上,考察了Fe2O3、La2O3两种添加剂最佳添加量分别对烟煤与兰炭混合煤粉的强化燃烧行为,结果表明:在不降低混合煤粉燃烧性能的前提下,向兰炭与烟煤的混合煤粉中加入2 wt%的Fe2O3后,可以使兰炭的最适配比量提高到35%,加入1 wt%的La2O3后,可以使混合煤粉中兰炭的最适配比量提高到40%之间,此时混合煤粉的燃烧特征参数都与参照煤粉(无烟煤:兰炭=1:1)的燃烧特征参数一致,满足高炉喷吹的指标要求。
其他文献
工业纯钛TA1具有较好的加工性、成形性、焊接性和耐腐蚀性,同时其对热处理不敏感,被广泛应用于石油、化工、航空航天以及航海等领域。近年来,我国钛用量逐年增长,但由于钛的提取、熔炼和加工十分困难,钛生产过程成品率低,从海绵钛到成品钛材的生产过程中产生的有形材料损失约占总投料量的50%,钛生产及加工过程产生了大量的钛屑、边丝、锭头、锭尾、热轧板头、等外板、热轧废料等废残钛,对于钛资源不仅是极大的浪费,而
高锰钢在强冲击以及高应力的工况下有较好的抗冲击磨料磨损和抗凿削磨损性能而被广泛应用在冶金、矿山、建材、铁路等机械设备领域。高锰钢进行水韧处理后的内部组织中常形成较为粗大的碳化物,对高锰钢性能产生较大影响。为了提升高锰钢的加工硬化能力,制备出Ti-V-Nb合金化超高锰钢,通过热处理能够对合金化超高锰钢中碳化物的尺寸和分布进行调控,以达到改善组织和力学性能的目的。因此研究热处理工艺对铸造合金化超高锰钢
Custom 450高强度不锈钢兼备了高强度、耐腐蚀性以及良好的塑、韧性和机加工性能,因此被广泛地应用于航空、航天以及蒸汽轮机、食品加工等军民用领域。近些年,随着我国高端装备的快速发展,对该钢的异形截面的型材有了较大的需求,综合考虑了型材的成材率和生产成本等因素,现阶段一般采用热挤压的工艺方法,然而Custom 450钢具有合金含量高,导热性能差、高温变形抗力大以及成形温度区间窄等特点,给热挤压成
铜合金具有优良的导热导电性能,是理想的液体火箭发动机燃烧室冷却壁材料。选区激光熔化技术的高自由设计度,能够方便快速的实现复杂零件的高精度成形,为航空航天发动机燃烧室的结构设计优化提供了一种新的途径。但是,由于目前多数选区激光熔化设备采用红外激光器,而铜及铜合金对红外激光能量吸收率低,严重影响选区激光熔化成形铜合金的组织和性能。为了改善铜及铜合金的选区激光熔化成形后的组织与性能,本文在考察粉末粒度、
QSi3-1铜合金以其优良的使用性能、工艺性能及力学性能等特点,被广泛应用于航空航天、国防军工、轨道交通等领域。与传统制造技术相比,采用电弧增材制造(Wire Arc Additive Manufacture,WAAM)技术成形QSi3-1铜合金零件,其优势表现为无需模具、制造周期短、成形效率高;与以激光为热源的激光增材制造技术相比,该技术的主要优势不仅表现为成形效率高、成形大尺寸零件不明显增加设
钛及钛合金密度小,比强度高,耐蚀性优良,生物相容性好,被广泛的应用在航空航天、医学、体育等领域。但其硬度低、耐磨性和高温抗氧化性差的特点限制了进一步推广和应用。表面改性技术是一种改善钛及钛合金表面性能的重要手段之一。其中,固体粉末渗法由于具有操作方便,工艺简单等特点而被广泛使用。本文以TA2工业纯钛作为基体,采用单渗硼、单渗铝以及硼-铝复合渗的工艺对其进行表面改性,研究表面处理温度对渗层组织与性能
现代的铜冶炼工艺主要以火法为主,其主要工艺为熔炼-吹炼两个阶段,但是随着我国对铜需求量的逐渐增加,高品位的铜精矿日益减少。我国面临着高品位铜矿匮乏的状态,其可开采的铜矿品位降到了0.2%,冶炼厂面临的原料将是杂质含量越来越高的铜精矿,降低渣含铜是目前大多数铜冶炼厂关注的问题。本文以云南某冶炼公司产生的铜电炉缓冷渣和铜转炉渣作为实验原料,开展了不同组分和添加添加剂条件下降低铜电炉缓冷渣渣粘度和渣上层
滇南岩脚铅锌矿床位于西南“三江”造山带兰坪-思茅中-新生代盆地之思茅盆地南端,是近年新勘查发现的一个中型砂泥岩容矿型铅锌矿床,其赋矿围岩被划定为中侏罗统-下白垩统。通过对岩脚矿区岩芯的详细地质编录,在该矿区中侏罗统和平乡组地层中发现大量不同类型、规模和期次的软沉积变形构造(Soft-Sediment Deformation Structuers/SSDs),并显示与铅锌矿(化)体密切的共(伴)生关
锡矿化与花岗岩的研究已有历史,尤其对华南地区花岗岩与锡等金属矿化的关系研究甚为深入。位于中亚造山带东段兴蒙造山带的大兴安岭南段,是我国北方重要的锡多金属成矿带,成矿潜力巨大,同时也是研究花岗岩与锡等金属元素成因关系的典型区域。位于大兴安岭南段的黄冈-甘珠尔庙成矿带南部的安乐矿床是一个中型规模的热液脉型锡多金属矿床。已知矿体赋存于上二叠统林西组砂岩板岩破碎带中,其成矿地质体为花岗斑岩,成矿元素为一套
海相砂岩型铜矿床是指产于海相细碎屑岩—碳酸盐建造中的层状铜矿床,铜资源规模大,经济价值高,东川铜矿带因民铜矿床和加丹加成矿带Luiswishi铜钴矿床均为该类型铜矿床,发育稳定的层控铜矿体,本文通过对比两个矿床的地质特征、流体包裹体、地球化学特征及成矿作用,获得以下认识:1、通过地质特征对比,发现两者均具有多层位成矿特征,主要赋存于砂质白云岩、碳质板岩和碳质白云质页岩中。铜矿体呈层状、似层状,发育