钴基p型透明氧化物半导体电子结构和导电机制的研究

来源 :厦门大学 | 被引量 : 0次 | 上传用户:hl217348
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
透明导电氧化物(TCO)兼具高导电和高透明的特性,已广泛应用于平板显示、太阳能电池和柔性电子器件等产业领域。目前大部分TCO为n型半导体,而与之匹配的高性能p型材料却极度匮乏,极大地制约了多功能新型电子器件的构建和开发。限制p型氧化物半导体性能提升的关键因素是价带顶部O 2p6电子态的强局域化特征,导致其空穴有效质量大、迁移率低。我们从优化氧化物的能带结构出发,通过引入准闭壳层的Co 3d6(t2g6)电子态与O2p轨道进行耦合,开发了钴基p型透明氧化物半导体,有效提高空穴迁移率,实现了高的p型导电性。但目前此类材料的电子结构和导电机制还存在争议,阻碍了其进一步应用与发展。基于上述问题,本文对钴基p型透明氧化物半导体的电子结构、光学性质和p型导电性展开系统的研究,主要内容包括:(1)利用脉冲激光沉积(PLD)技术外延生长了高质量的Co3O4、ZnCo2O4和CoAl2O4单晶薄膜。采用X射线光电子能谱(XPS)和吸收谱(XAS)并结合密度泛函理论(DFT)计算精确地描述了它们的电子结构、光学性质和导电机制。研究发现,ZnCo2O4的带隙为1.3 eV,而非长期以来文献报道的2.26-2.8 eV。但该电子带隙源于光学禁阻的Oh位Co3+的d-d跃迁,合理地解释了 ZnCo2O4在可见光范围内的透明性。而Co3O4和CoAl2O4的带隙为0.8 eV,源于Td位Co2+的d-d跃迁。这些研究解决了长期以来关于此类材料电子结构的争议,为其在光电器件和催化等领域的应用提供了理论指导。对ZnCo2O4的缺陷化学研究证明,在高氧压下形成的锌空位是ZnCo2O4高p型导电性的来源,且其空穴传导机制遵循小极化子跳跃模型。ZnCo2O4的高p型电导性、高功函和在可见光范围内的透明性使其成为光电器件和催化等领域亟需的高性能p型TCO。(2)在不同温度下外延生长了 NiCo2O4单晶薄膜,并深入研究其电子结构、光学性质和导电机制。结果表明,温度降低产生的Ni3+,在费米能级上方引入空穴态,增强O2p与金属3d轨道的杂化,减小了带隙。该带隙源于光学禁阻的d-d跃迁,同时,由于Ni 3d轨道的强关联效应,NiCo2O4表现出优良的红外-可见光透明度。此外,双交换作用和超交换作用的竞争关系决定了 NiCo2O4的导电机制,Ni3+含量较高时,Ni3+-Ni2+双交换作用占主导,使其呈金属态。NiCo2O4优异的光学和电学性质为开发透明导电的新型p型氧化物电极材料提供了新思路。
其他文献
目标跟踪是计算机视觉领域中一项基础研究任务,在视频监控、城市安防、智慧交通的场景中应用广泛。因此,对目标跟踪方法的研究具有重要的理论意义和应用价值。随着深度学习的快速发展,基于深度神经网络的目标跟踪方法表现出优越的性能,目标跟踪算法整体性能得到了显著的提升。其中,基于全卷积孪生网络的目标跟踪算法,由于其良好的跟踪精度与高效的跟踪效率,受到了研究人员的广泛关注。然而,由于背景杂乱、光照变化、目标表观
学位
双离子电池是一种超越传统摇椅电池的新型电池体系,它具有高能量密度、低成本,环保和长寿命等优点,已成为研究热点之一。传统的双离子电池其正负极均采用石墨电极材料,石墨负极在双离子电池中低的理论比容量导致整体电池低能量密度问题,因此探究可替代石墨的负极材料是改善双离子电池性能的有效措施之一。采用高比容量的锂金属作为负极材料可显著提升电池的能量密度,但锂金属负极在循环过程中存在严重的锂枝晶生长问题导致电池
学位
图像语义分割是计算机视觉任务中一个经典的研究方向,其目的是对图像中的每一个像素点进行分类,使得图像语义信息相同的像素点具有相同的语义类标,从而实现对图像的语义内容分割。得益于深度学习技术的不断发展,图像语义分割任务取得了一系列巨大的突破,运用卷积神经网络技术解决图像语义分割难题已经成为主流方法。基于深度全卷积神经网络(FCN)的图像语义分割模型的训练过程可以被归纳为三个阶段:(1)主干层级特征提取
学位
本论文在医疗信息化背景下,利用物联网、大数据分析技术,结合人工智能,机器学习算法设计了具备医疗信息通信与交互、智能化识别、监控和管理为一体的医疗物联网平台,实现了前端设备数据采集、多源异构体征数据归一化处理、远程体征信息智能建模分析、应用服务共享互惠的需求。传统医疗信息化系统存在数据孤岛现象严重、数据评判标准单一、患者病情误判率高的问题,且传统的体征测量及传输方式无法对病人体征进行实时监测,不能有
学位
药物靶向释放可实现对体内特定部位的药物治疗,提高药物利用率,并减少其副作用,因此在各类疾病的治疗中应用越来越广泛。在药物靶向释放体系中,载体的性质是直接影响体系效果的主要因素。通过对载体进行优化,可以提高目标药物的包封率,并且对药物的释放过程进行调控。本研究利用果胶-蔗糖凝胶体系在超高压下的熔化现象,实现模型药物柳氮磺胺吡啶的常温包埋和结肠靶向输送。主要的研究内容和结论如下:(1)用pH=2.2的
学位
本论文主要涵盖两方面研究内容:(一)由白磷直接构建硫磷酸酯化合物;(二)紫外辐射下核酸对二肽的保护作用探究。第一部分:磷元素是与生命息息相关的重要元素,许多与生命活动密切相关的过程都有磷元素的参与。硫磷酸酯类化合物具有多种生物活性,例如杀虫杀菌、作为生长调节剂、抗胆碱酯酶药物等等,广泛应用于农业、功能材料、有机合成以及生物医药等领域。因此开发硫磷酸酯类化合物的合成方法具有重要的经济及社会价值。现如
学位
大数据时代,我国政府数据开放运动方兴未艾,较之美国等发达国家,我国数据开放平台存在着分散、成熟度不同的问题,准确把握我国数据开放平台的现状和问题存在一定困难。本文以12个省级数据开放平台作为研究对象,通过数据分析描述我国省级政府数据开放平台的现状,探究当前政府数据开放平台存在的突出问题,并提出相应的对策。研究的思路是,运用数据分析软件对所选取的目标政府数据平台中发布的数据集进行全采样,从数据量、更
学位
随着智能终端的普及,柔性电子产品具有广阔的市场前景。柔性触觉传感器是一种新型的柔性电子设备,为机器与周围环境的相互作用提供了更多的可能性。它是在柔性电极迅速发展之后的新兴领域。柔性触觉传感器具有灵活性、重量轻、多功能和低成本等优点,并且在穿戴式电子设备和人工智能领域有广泛的应用。柔性触觉传感的摩擦电纳米发电机可以直接将机械刺激转换为电信号而无需额外的换能器,在有源感应和自供电传感器领域具有巨大的潜
学位
在当今瞬息万变的社会环境下,创新的重要性不言而喻,与发达国家比起来,我国的研发投入仍旧偏少,在政府高度重视的同时企业也应积极响应。但是,在实际执行过程中,创新项目的决策者——管理层很可能会为了谋求私利做出一系列自利行为。因此,文章结合理论分析和前人文献分析,提出假设、设计变量与模型,从2013-2017年我国所有A股上市公司中筛选出符合条件的2367个公司年度观测值,将管理者自利行为作为解释变量,
学位
由于锂离子电池的快速发展,全球锂资源已无法满足其需求。因此,开发其他成本较低的可替代安全储能体系势在必行。钠元素在地壳中的储量丰富、分布广泛、并且与锂元素具有相似的物理性质以及化学及质。资源丰富、成本较低的钠离子电池有望在大规模储电领域中替代锂离子电池,其关键之一是开发合适的负极材料。过渡金属硫化物负极材料比容量较高,而导电性差和循环过程中体积变化剧烈,导致其循环性能和倍率性能较差。本论文通过调控
学位