论文部分内容阅读
燃料乙醇作为一种新型的、可再生的石油替代物,可以有效缓解当前环境污染和能源紧缺问题。渗透蒸发可以有效的打破水和乙醇汽液平衡的限制,相较于传统分离,产物纯度高、节约能源。渗透蒸发杂化膜可以有效综合高分子基质成膜性良好和无机颗粒渗透性良好的特点,无机颗粒的引入可以有效干扰高分子排布,克服高分子膜的Trade-off效应。本文将亲水性碳基材料引入杂化膜中,应用于渗透蒸发乙醇脱水领域。通过调控无机颗粒的物理化学性质、其与高分子间相互作用,强化溶解过程与扩散过程来制备高性能渗透蒸发膜。(1)将工业废料磺化沥青(SP)引入到海藻酸钠(SA)中,SP片层上带有亲水性磺酸根和疏水性碳骨架。研究了SP对于高分子基质的影响、膜的最佳分离性能、操作条件对膜性能的影响。结果表明,SP本身对于水的亲和力大于乙醇,可以有效提升溶解选择性。SP表面的高亲水性磺酸基团通过静电作用结合水分子形成水化层,保证膜内较高的水分子吸附率;SP疏水部分可以提供水分子扩散的快速通道,提高水分子扩散速率。当SP填充量为3 wt%时,杂化膜在350K下分离90 wt%的乙醇水混合溶液性能最佳,渗透通量为1879±80g/m~2h,分离因子为1913±69。该膜的机械稳定性和长期操作性良好。(2)将氧化石墨烯量子点(GOQDs)引入到SA中,研究了GOQDs对于高分子基质的影响、填充量对于分离性能的影响、操作条件对膜性能的影响。GOQDs亲水性强,可以提高膜表面亲水性。纳米级别的片层尺寸可以减小水分子在扩散过程中的渗透阻力,提升渗透通量。GOQDs填充量为2 wt%时,杂化膜在350K下分离90 wt%的乙醇水混合溶液性能最佳,渗透通量为2432±58g/m~2h,最佳分离因子1152±48。该膜的渗透通量与文献中填充氧化石墨烯的杂化膜相比提升明显。(3)建立了SA膜、SA-GOQDs杂化膜的全原子模型,通过分子动力学模拟研究了GOQDs的引入对于杂化膜结构以及渗透物分子传质过程的影响。定量计算了杂化膜内SA-GOQDs之间的相互作用;通过高分子链均方位移发现杂化膜内高分子链运动性减小,通过Connolly表面法计算了膜的自由体积特性,发现杂化膜自由体积分数减小;通过Einstein公式计算了水和乙醇在膜内的扩散系数,发现水分子在GOQDs片层间的扩散速率高于其在高分子主体内扩散系数,同时GOQDs引起的高分子链紧密堆积大大提高了扩散选择性。