氯酚类污染物在Fe3O4负载型纳米铁类Fenton体系中的降解

来源 :兰州交通大学 | 被引量 : 0次 | 上传用户:zzqq1984
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来,随着造纸、印染、农药及医药等的迅速发展,生产中间体氯酚(CPs)类物质造成的水污染问题日趋严重,因此,其治理和修复是目前亟需解决的环境难题。在众多的水处理技术中,利用纳米零价铁的强还原性和Fenton技术的强氧化性处理CPs污染水体成为环境科学领域的研究热点。本文以磁性纳米Fe3O4负载的纳米零价铁(n ZVI)为催化剂,构建类Fenton体系对三种典型CPs(即,对氯苯酚(4-CP)、2,4-二氯苯酚(2,4-DCP)和2,4,6-三氯苯酚(2,4,6-TCP))的降解效果进行了研究,考察了影响CPs降解的关键因子,探究了CPs在Fe3O4-n ZV类Fenton体系中的降解机理和途径,为Fe3O4-n ZVI类Fenton体系处理CPs废水提供参考和依据。主要结论如下:1.扫描电子显微镜(SEM)和X射线能谱分析(EDS)表征结果表明Fe3O4-n ZVI粒径为纳米级(50~200nm),颗粒呈球型以链状连接,元素组成中Fe和O的占比分别为64.27%和16.53%,为复合材料的主要构成元素。光电子能谱分析(XPS)和X射线衍射分析(XRD)的谱图中出现了明显的Fe3O4能谱特征峰,证实了Fe3O4的存在,n ZVI处于无定形状态。振动样品磁强度分析(VSM)证明Fe3O4-n ZVI具有较好的磁分离性能,可进行磁回收利用。2.批平衡实验结果表明,(1)不同纳米材料和体系对CPs的去除能力存在明显差异,单独的H2O2体系对CPs的表观降解率最低,各体系对CPs的表观降解率顺序是H2O2<Fe3O4<n ZVI<Fe3O4-n ZVI<Fe3O4-H2O2<n ZVI-H2O2<Fe3O4-n ZVI-H2O2;(2)在一定实验控制条件范围内,增大H2O2浓度可有效提高CPs的表观降解率,当浓度超过该范围(0~15mmol/L),CPs的表观降解率随H2O2浓度的增大而减小;(3)CPs的表观降解率随Fe3O4-n ZVI投加量的增大而增大,但当其投加量超过0.6g/L时,CPs的表观降解率反而会降低;(4)溶液初始p H对CPs的表观降解率影响非常明显,降低体系p H可有效提高CPs的表观降解率,但当p H<3时,CPs的表观降解率反而出现下降趋势;(5)CPs的表观降解率也受其初始浓度影响,即增加CPs的初始浓度,其表观降解率出现下降;(6)反应温度似乎对CPs的表观降解率影响并不明显。3.淬灭实验、动力学拟合和质谱结果表明Fe3O4-n ZVI类Fenton体系对CPs的降解中·OH氧化占主导地位,降解过程符合拟一级动力学方程,降解机理包括氯的取代和亲电加成反应。即,Fe3O4-n ZVI类Fenton体系中多氯酚转化单氯酚,单氯酚再进一步转化为酚类化合物,酚类化合物再经氧化为醌,最后开环转变为小分子酸,直至成CO2和H2O。
其他文献
近二十年来,随着人们生活水平的不断提高,工作地点从室外不断转向室内,更多装饰装修材料的使用和办公室的密闭性越来越好,造成室内甲醛超标的现象日益严重,加上人们对室内的空气品质和舒适度要求越来越高,为了建立一个舒适健康的工作环境,利用气流组织方式的“稀释”原则将室内甲醛有效排出室外是目前最有效的方法。本文选用兰州某一典型办公室为研究对象,采用夏季通风空调设计规范,建立不同通风方式的物理和数学模型。通过
学位
为减少建筑能耗,实现太阳能建筑一体化,本文构建了一种新式太阳能集热器——传导式太阳能百页集热器,因该集热器结构形式特殊,可以在一定程度上解决集热器与建筑结合时出现的不易布置、冻结以及渗漏等问题,使得太阳能集热器与建筑更好的结合使用。本文将吸热板传热形式视为肋片导热进行理论计算,得到在一定尺寸条件下所需的吸热板厚度符合金属生产技术条件以及传统集热器吸热板的正常厚度范围,以此初步判断该形式集热器可行。
学位
交通能耗占据社会终端能耗的近30%,公交车辆等量大面广。传统公交车辆等空调普遍采用压缩制冷、室内空气密闭循环,能耗高、空气品质差,而直接蒸发冷却空调可有效解决此类问题。公交车辆车内气流组织的合理与否不仅对乘客的舒适性有着直接和重要的影响,还关乎客车空调运行的经济性。目前,针对传统公交车车内气流组织的研究成果颇多,而对于采用直接蒸发冷却技术进行空调供冷的公交车车内气流组织的研究却仍属空白。直接蒸发冷
学位
大气污染严重威胁着人类的生存与可持续发展,其中气态污染物的存在已被确定为一个重要的空气污染因素,并被认为是造成许多健康和环境问题的原因。许多研究认为,氮氧化物是一类非常重要的空气污染物,其中主要成分为NO。近年来,绿色光催化技术在去除NO方面的应用研究备受关注。然而单纯的光催化技术对工业烟气中的ppm级NO的处理难以达到实际应用的效果。将H2O2氧化技术与光催化技术相结合,两者优势互补,对工业烟气
学位
全球每天都有源源不断的挥发性有机物被释放到大气中。随着城市化进程的快速发展,人为释放到大气中的挥发性有机物逐渐增多。挥发性有机物聚集到大气中使得空气质量变差,对人类的健康和大气环境带来巨大的挑战。挥发性有机物还是形成二次有机气溶胶(secondary organic aerosol,SOA)的关键前体。二次有机气溶胶是颗粒物的重要组成部分,也是雾霾污染的主要贡献者。大多数挥发性有机物可以与大气中存
学位
喹诺酮类抗生素作为广泛应用于人类生产和生活中的一类典型抗生素,吸附性强,会在环境中大量累积并通过迁移转化进入人体,对生态系统稳定性、多样性和人类健康造成直接或潜在的威胁。半导体光催化技术具有绿色环保、无毒无害、不产生二次污染的优点,利用其降解水中有毒有机污染物的研究也成为相关领域研究热点。在众多的半导体光催化剂中,具有高的可见光响应的混合价态氧化物四氧化三锡(Sn3O4)由于其合理的导带价带位置、
学位
甘肃省作为一个以农业产业化发展为主的西北大省,农村地区面积广阔,水资源匮乏,农村人口基数大。其农村地区的生活污水主要以厨卫、洗涤等为主,成分简单,重金属等有害物质含量少,目前普遍的排放方式对土壤及地下水存在一定的污染隐患。同时农村地区农药的过度使用加重了对土壤及地下水的污染程度。因此为了加快建设美丽乡村进程,对农村地区典型污水在黄土中的运移规律的研究有重要意义。研究采用室内试验与软件模拟相结合的模
学位
石油化工领域能耗占据终端能耗相当比例,其制冷换热量大面广,高效换热器的研究和应用成为亟需。螺旋交叉缠绕管式换热器是一种新型高效节能的换热设备,虽然传热原理属于管壳间壁式换热器,但完全突破了传统管壳式换热器的设计思路,在材料、形状、结构等方面都独具特点,同等条件下,换热系数是传统管壳式换热器的2~3倍,节能15%以上,单位容积下螺旋交叉缠绕管式换热器换热面积是普通管壳式换热器的2倍左右。螺旋交叉缠绕
学位
近年来,水资源短缺一直是影响人类社会发展的问题之一,膜分离技术作为一种能耗低、操作简单、分离效果好的水处理技术,在污水处理与水资源回用领域获得了越来越多的关注。应用最广泛的分离膜是采用界面聚合法制备的聚酰胺膜,主要包括反渗透膜和纳滤膜。聚酰胺膜具有良好的离子分离能力,在水处理工艺中扮演着重要的角色。但是,聚酰胺膜的分离性能仍是限制其更广泛应用的问题之一。为了提高聚酰胺膜的分离性能,研究者常会使用纳
学位
黑河中游地区降水稀少,水资源短缺,但该区域景观类型众多,各景观类型生态需水量各不相同。因此本文以黑河中游作为研究区,探究该区域不同景观类型的土壤水分状况,旨在为黑河中游地区水资源合理配置、防风固沙工程建设提供相关依据。本研究于2021年5-9月(雨季)对研究区不同景观0-100 cm竖直剖面上土壤水分进行观测,并进行相关分析研究。主要成果如下:(1)黑河中游各景观类型土壤体积含水率总体表现为:河岸
学位