锂离子电池正极氟化亚铁/炭复合材料的制备及其电化学性能的研究

来源 :北京化工大学 | 被引量 : 0次 | 上传用户:wdtt111
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
正极材料作为锂离子电池中关键的一部分,其容量和能量密度对锂离子电池的整体性能影响重大。氟化亚铁(Fe F2)具有高理论比容量、高能量密度、高放电平台以及原料价格低廉等特点,成为极具发展前景的锂离子电池正极材料。但Fe F2在电池充放电过程中较大的体积变化会使电极结构发生塌陷,其放电产物(Li F)的导电性较差,这些都严重阻碍了Fe F2的电化学性能。本论文开展了Fe F2纳米材料的合成、炭掺杂改性及其电化学性能的研究。具体如下:(1)通过溶剂热法合成了Fe F2@C正极材料,通过改变一系列实验条件不断优化合成路线,从而为后续的掺杂提供合适的制备参数。实验结果表明,较低的溶剂热温度和较高的炭化温度都会生成较多杂质,较短的反应时间与较少的表面活性剂添加量则不能使样品形成良好均一的形貌。产物的电化学容量随反应时间和表面活性剂的增加呈现出先增长后下降的趋势。在溶剂热温度为220℃下反应16 h,添加0.8 g表面活性剂,炭化温度为500℃的实验条件下获得的Fe F2@C正极材料拥有最佳的纯度、结晶度、形貌结构与电化学性能。(2)为进一步提高电化学性能,在最佳合成条件下掺杂科琴黑(KB)制备Fe F2@KB正极材料。Fe F2@KB是由粒径15 nm的球形颗粒自组装形成的立方骰状微米颗粒,骰状颗粒粒径为8μm,外部包裹一层5 nm的炭壳,独特的构造使得其电化学性能得到大幅增强。电流密度为0.06 A g-1时,Fe F2@KB工作50次后还有208.4 m A h g-1的比容量;在0.6 A g-1的大电流密度下,Fe F2@KB工作200次后还比容量为94.6 m A h g-1,为初始容量的95%。大电流密度下Fe F2@KB的高赝电容效应(81%)与高离子扩散系数(6.8×10-14cm s-1)也有助于提高Fe F2@KB的电化学性能。(3)通过熔盐法合成了Fe F2@C正极材料,通过改变熔盐种类和反应温度以获得拥有最佳成分组成、形貌以及电化学性能的样品。结果表明,在350℃下使用Zn Cl2为熔盐制备出的样品在纯度较高的同时拥有良好的形貌结构。样品整体呈现出由炭壳包覆的棒状形貌,其直径为200-600 nm,长度为5-10μm。其在0.06 A g-1的电流密度下工作50次后比容量为182.8 m A h g-1;在倍率性能测试中其稳定比容量为204.6 m A h g-1,保持率高达99.8%。此外,通过对比不同碳含量样品的电化学性能发现,样品中的赝电容效应与离子扩散系数随着碳含量的提高不断增强。创新性的使用熔盐法作为合成方法,为Fe F2的改性提供了新的思路。
其他文献
骨肉瘤是骨骼中最常见的原发性恶性肿瘤,多发于儿童及青少年,致残致死率高,目前治疗模式下的肿瘤远处转移、肿瘤耐药等问题仍亟待解决。在骨肉瘤的发生发展过程中,许多miRNA的功能水平会失调,其中miR-22和miR-30d的表达水平被显著下调,因此这两种miRNA有希望成为骨肉瘤的治疗靶标。在基因治疗的流程中,递送载体是一个关键环节,聚阳离子基因载体,由于具备免疫原性低、分子结构设计灵活等优点,受到了
学位
氧化石墨烯(GO)表面具有丰富的含氧官能团而易于加工和改性,以GO为基体构建的独立式薄膜在保持GO原有性质的基础上增添了许多独特的性能与结构,有巨大的应用潜力。因此,本研究通过对GO薄膜改性来调控其微观结构与性能,从而拓展GO薄膜在压阻传感和电磁屏蔽领域的应用。主要研究内容如下:(1)采用模板法制备了尺寸可控的高导电(1600 S·m-1)聚吡咯纳米管(ppy NT),并基于ppy NT与GO之间
学位
随着工业技术和社会经济的不断发展,水体中的各种污染物日益增多,对环境和人类健康造成了严重威胁,清除水体中的污染物成为重要研究课题。文献曾报道以聚丙烯纤维膜为基材进行乙烯基甲酰胺(NVF)表面接枝改性,制得高通量、高污染物吸附量、再生性能优异的吸附分离膜,显示出在水处理领域的巨大应用潜力。但是,通过NVF的共聚物对基膜进行物理改性制备吸附功能膜尚未见报道,以PNVF分子链为两亲性活性吸附位点的吸附膜
学位
近些年来,随着科技的迅猛发展和工业化进程的不断加快,水资源的滥用和污染形势日益严峻。以含油废水为代表的低表面能、高粘附性污水的处理技术越来越受到人们的重视。在新世纪以来,,膜技术凭借其高效、节能和低成本等特点成为了先进分离和纯化技术的代表,得到了广泛的研究。膜法分离含油废水,本质是在膜表面发生超浸润现象,构建抗污染的膜表面,利用污染抵御机制和污染驱除机制分离油水混合乳化液。其中,采用污染抵御机制,
学位
在能源危机和碳中和的背景下,如何实现绿色、高效的能源储存和输送已迫在眉睫。锂离子电池虽能提供可观的能量密度但制约于低功率输出,而超级电容器具有较快的功率输出但缺乏高能量储存能力,使得二者不能满足人类对高能量、高功率的双重需求,因此亟需开发出一种能克服上述缺点的储能设备。结合超级电容器快速的功率输出的电容型正极和锂离子电池高的能量储存的电池型负极的锂离子混合电容器,被认为有望作为锂离子电池和超级电容
学位
为提高硫化聚丙烯腈正极的电化学性能,本文对聚丙烯腈(PAN)的硫化反应进行了研究,力图提高硫化聚丙烯腈材料中硫元素的含量。具体开展了三方面的研究工作:(1)研究了在聚丙烯腈(PAN)硫化反应体系中引入环化反应促进剂(硝酸镍、硝酸钴或硫酸铜),通过促进PAN的环化反应,提高结构规整度,增加产物中含硫量。研究结果表明,硫酸铜的引入可使产物硫含量提升到52.39 wt%,并在结构中形成Cu S。以其为正
学位
随着国家对海洋资源开发与利用的日益重视,海洋船舶制造业得到了快速发展。船舶在海洋环境中服役,遭受到各种腐蚀条件的作用与破坏。其中,空泡腐蚀由于是电化学腐蚀与力学冲击的综合作用结果,成为海洋环境中破坏力最强的腐蚀类型。镍铝青铜合金具有良好的力学性能、耐蚀性能和防海生物污损性能,在船舶螺旋桨、海水泵等遭受空泡腐蚀的部位得到应用。但是,随着海洋船舶航行速度、工况环境、使用要求的不断提高,对发展新型耐空泡
学位
热塑性聚氨酯具有可重复加工性能和优异的力学性能,已经实现了广泛的应用。然而,由于其交联网络结构是物理作用产生的,在高温下的模量低、耐热变形能力差,限制了其应用。为了提高聚氨酯的热力耦合性能,本论文采用高模量的短纤维如聚酰亚胺纤维和芳纶纤维,对聚氨酯材料进行补强,以提高聚氨酯的模量和耐热形变能力。主要工作如下:(1)选用不同长度的聚酰亚胺纤维,通过熔融共混制备聚酰亚胺纤维/聚氨酯复合材料,优化了加工
学位
质子交换膜(PEM)电解水制氢技术是氢能研究热点之一。针对水电解过程中阳极氧析出反应(OER)具有动力学过程十分缓慢,能耗高等行业共性瓶颈问题,论文开展了超细钌铱合金纳米晶的制备及其电催化水裂解的协同机理研究。采用可控多元醇热还原反应体系,合成了一系列不同组分的钌-铱合金纳米晶电催化材料。通过合金中多种活性组元间的电子耦合效应、几何配位效应等有效调控手段,实现了酸性水中氧析出电催化性能的提升。论文
学位
水系锌离子电池具有安全性好、成本低廉、能量密度高等优点,在电化学能量存储领域表现出良好的应用前景。然而,常用的金属锌负极存在枝晶生长、析氢反应、腐蚀反应等问题,造成水系锌离子电池存在库伦效率较低和循环寿命较短的问题。因此,开发简单高效的金属锌负极的改性方法并揭示其改性机制,对于水系锌离子电池的实用化具有重要意义。本论文以成本低廉、富含丰富氮氧官能团的生物质衍生物作为电解液添加剂,直接实现了金属锌负
学位