【摘 要】
:
镁基复合材料因其高强度、高模量、轻质化等优点,在工程应用领域潜力巨大。为进一步提高镁基复合材料的综合性能,特别是力学性能和耐腐蚀性能,晶须增强镁基复合材料近年来逐渐成为研究热点。本文选择纯镁(Mg)和低稀土镁钆合金(Mg-2Gd)作为复合材料基体,以四针状ZnO纳米晶须(ZnOnw)作为增强相。ZnO晶格常数与Mg非常接近,其纳米晶须具备高强高模、低热膨胀和各项同性的特点,可作为理想的镁基复合材料
论文部分内容阅读
镁基复合材料因其高强度、高模量、轻质化等优点,在工程应用领域潜力巨大。为进一步提高镁基复合材料的综合性能,特别是力学性能和耐腐蚀性能,晶须增强镁基复合材料近年来逐渐成为研究热点。本文选择纯镁(Mg)和低稀土镁钆合金(Mg-2Gd)作为复合材料基体,以四针状ZnO纳米晶须(ZnOnw)作为增强相。ZnO晶格常数与Mg非常接近,其纳米晶须具备高强高模、低热膨胀和各项同性的特点,可作为理想的镁基复合材料增强相。本文设计优化了复合材料制备工艺,利用机械球磨法制备预制块,结合半固态熔融机械搅拌工艺,成功制备出ZnO纳米晶须与纯Mg基体复合的xZnOnw/Mg(x=0,0.1,0.5,1.0 wt.%)复合材料,以及ZnO纳米晶须与Mg-2Gd基体复合的xZnOnw/(Mg-2Gd)(x=0,0.1,0.5,1.0 wt.%)复合材料。同时,本文通过一系列实验与表征,对两个系列复合材料的微观组织、力学性能和耐腐蚀性能开展了系统研究,为镁基复合材料的开发和应用提供了一定的依据。一方面,在xZnOnw/Mg系列复合材料中,随着ZnO纳米晶须含量增加,挤压态复合材料织构逐渐弱化,晶粒尺寸细化,强度不断提升。当ZnO纳米晶须添加量为0.5 wt.%时,复合材料综合力学性能最好。相较于纯Mg,0.5ZnOnw/Mg复合材料屈服强度提升67.9%、抗拉强度提升28.2%,塑性保持不变;同时,0.5ZnOnw/Mg复合材料也表现出了优异的耐腐蚀性能。然而,随着添加量持续增多,过量ZnO纳米晶须(1.0 wt.%)容易在基体中形成明显团簇,不利于力学性能进一步提升,也导致了腐蚀性能降低。另一方面,与xZnOnw/Mg系列复合材料相似,xZnOnw/(Mg-2Gd)系列复合材料中的ZnO纳米晶须及其团簇沿挤压方向分布。随着ZnO纳米晶须含量增加,晶粒尺寸逐渐细化,基面施密特因子逐渐降低,强度逐渐提升。其中,0.5ZnOnw/(Mg-2Gd)复合材料表现出最好的综合力学性能。相较于Mg-2Gd合金,0.5ZnOnw/(Mg-2Gd)复合材料的屈服强度和抗拉强度分别提升了91.5%和36.2%,塑性并没有明显降低。同时,晶粒尺寸和ZnO纳米晶须增强相分散程度也是影响xZnOnw/(Mg-2Gd)复合材料耐蚀性能的主要因素。在0.5 ZnOnw/(Mg-2Gd)复合材料中呈现出的细小晶粒尺寸,以及均匀分布的ZnO纳米晶须增强相和第二相,都有利于材料的均匀腐蚀,耐腐蚀性能明显提升。
其他文献
作者、本文、读者三种中心论,是西方文学批评在整个20世纪经历的三次转折,分别代表着回归作者原意,专注文本本身,以及把读者纳入意义解读当中,是文学批评发展史上的重要过程。在不同的时代背景下,社会转变过程中,文学批评的客体在“作者——作品——读者”三者间的转换造成了文学批评内部构造的不断重构。建筑批评或称建筑评论、建筑评价,是建筑学专业中的一种批评性的实践。建筑批评作为批评学的一种,按照一定的批评标准
数字化车间信息集成是实施智能制造的关键步骤,它的核心是通过信息技术手段,将车间信息规范统一并集成,使信息能在整个系统中流通,从而有效采集车间信息,配置生产资源,达到提高人员设备效率,降低生产成本的目的。船用柴油机关重件企业属于多品种、小批量的柔性生产方式,这类企业在实施智能制造中缺乏相关的标准,因此,制定符合该行业企业特点的智能制造相关标准,并且通过标准验证平台对标准内容进行验证,对此类行业企业进
鸢乌贼(Sthenoteuthis oualaniensis)为印度洋-太平洋地区广泛分布的重要经济物种,基于形态特征,鸢乌贼被划分为5个不同种群,然而针对太平洋和印度洋海域鸢乌贼的种群遗传结构研究较为缺乏。为厘清鸢乌贼在东印度洋的种群遗传结构及其通过东印度三角区与西太平洋种群的跨洋联系,本研究以东印度洋北部、赤道和南部,以及西太平洋的南海和菲律宾海共8个鸢乌贼地理种群为研究对象,基于线粒体DNA
燃料电池是最具发展潜力的能源转换装置,有着清洁高效,低温运行,燃料来源丰富,可移动性优点。氧还原反应(ORR)和氢氧化反应(HOR)是分别在燃料电池阴极和阳极发生的电化学反应。阴极上的ORR在动力学上由于O=O键的活化或裂解问题而变慢,目前商业化的ORR催化剂为Pt/C,但是全球铂的储量有限。此外,铂族金属催化剂的HOR活性在碱中比在酸性电解质中慢约两到三个数量级。这会导致阳极上更高的铂族金属负载
拉曼光谱是印度学者Raman于1928年首次观察到的一种振动光谱技术,能够为化学鉴定提供检测分子的“指纹信息”,引起了化学领域、材料领域与生物医学领域学者们极大的研究兴趣。但是拉曼散射极其微弱,检测微量物质时显的尤为不足。表面增强拉曼散射(Surface-enhanced Raman scattering,SERS)的出现使得这个问题得到了有效的解决。SERS可以有效的增加拉曼信号强度、抑制荧光对
夏热冬冷地区既有建筑室内热湿环境较差,居民为改善室内环境质量,空调供暖能耗逐年上升。目前该地区供暖空调能耗水平的理论研究与实测结果差异较大。本研究旨在明确该地区居住建筑供暖空调实际能耗水平及在满足城镇居民热舒适需求时的负荷特性及能耗需求,对该地区能耗调控和预测提供理论依据。首先,在成都、重庆、上海共选取46户典型城镇住宅,于2019/01/21-2020/10/26,对91台空调器,111台其它家
随着不可再生能源的不断消耗,开发利用各种可再生能源已成为世界各国的重要发展战略。我国海域面积辽阔,非常有利于海洋能的开发利用。作为一种海洋能,波浪能的实际可开发量最高,这也使其具有最大的开发潜力。波浪能的开发利用,不仅满足能源发展战略,还能满足国防需求。由于海洋环境的特殊性,这也对波浪能发电系统的可靠性提出了更高的要求。功率变流器作为新能源发电系统的核心组成部分,其长期安全可靠运行对于整个发电系统
智能交通系统(Intelligent Transportation Systems,ITS)是未来交通发展的核心,更是支撑车路协同、自动驾驶及车辆编队等无人化、智慧化交通的基础。车联网下的车载无线通信是ITS高效运作的重要组成部分,是保障交通安全、解决城市拥堵问题的关键技术。为了保证车联网通信的服务质量,在无线接收机侧采用信道估计联合信道均衡处理来对抗车联万物(Vehicle-to-Everyth
在过去的几十年中,凝聚态物理领域的发展突飞猛进,其中二维材料的发现和拓扑学的引入给这个领域带来了巨大的发展。人们在静态系统中已经发现了许多拓扑材料和拓扑现象,如拓扑绝缘体、量子霍尔效应、体-边对应关系等。而时间周期性驱动的系统,因具有更丰富的拓扑现象,并且拓扑性质可以通过改变周期性驱动场而变得易于调控,近几年来获得了越来越多的关注。对周期性驱动量子系统的主要研究方法为Floquet定理。人们发现在
必需基因对于生物的生存和繁殖起着不可或缺的作用,它的鉴定在合成生物学、生物医学、生物化学等方面有着重要意义。必需基因的鉴定主要采用实验方法以及基于计算的方法。大部分基于计算方法的研究采用了监督学习方法,这类方法需要使用大量标记数据训练模型以保证模型性能,但是获取基因的标记比较困难。针对这种情况,本文提出使用半监督学习预测必需基因。半监督学习可以同时利用标记数据和未标记数据信息以降低预测任务对标记样