面向现场空间定位检测的融入式测量系统关键技术研究

来源 :天津大学 | 被引量 : 0次 | 上传用户:jhl1989
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
现有的面向现场装配与检测的工业测量设备如激光跟踪仪、室内GPS等在船舶制造、航空航天等一些特定的测量环境下,比如在空间受限的船体舱段内部存在便携性较差,灵活性受到极大的限制等问题,此外测量人员和测量设备一般是分离的,测量信息的获取不具备实时性,降低了测量任务的交互性和测量效率。对此论文从改进测量工装入手,提出融入式人机环境交互定位测量的方案,使测量人员能快速融入到现场测量环境中,并具有一定的便携性和灵活性,操作简单,隐蔽点测量能力较强。本文主要针对融入式测量中的测量和定位两部分的技术需求,设计了手持式测靶和单目视觉结合的局部测量系统,配合测量头盔构成融入式测量系统,从系统的整体设计、测量定位原理及标定原理等方面进行了分析论证,最后搭建了实验平台验证了测量方案的可行性和有效性,实验结果表明,其测量精度和重复性精度能够满足特定的分段内部空间下测量场景对融入式测量系统的精度需求。本文的主要研究工作安排如下:(1)针对现有的测量仪器在一些大型装配检测现场测量过程中测量灵活性和人机交互性较差的问题设计了一套包含手持式测靶和测量头盔的融入式测量系统,介绍了系统的整体构成和设计思路,构建了系统的测量模型。(2)完成了手持式测靶的结构设计,软硬件交互设计,光学特征点的选型和空间布局设计,通过带阈值的高斯曲面拟合法进行特征中心精确提取,并利用所设计的空间布局实现特征点匹配,通过线性法和非线性迭代优化结合求解位姿得到局部测量信息,实现了基于手持式测靶的单目视觉局部测量方法。(3)针对测靶测头的标定容易受到噪声的影响,在最小二乘法的基础上对传统标定算法进行了改进,提高了标定精度。研究了影响局部测量系统z轴精度的因素,通过设计实验分析结果证明了非共面情况下特征点前后两端面间距离影响z轴方向的测量精度和稳定性。(4)设计了可用于现场全局控制场建立的两用式控制板,对多相机系统的全局定位原理进行了分析,通过定位相机拍摄控制板上的红外LED,基于LM算法迭代优化求解位姿,并配合最近邻动态匹配算法,实现基于三维立体控制场的全局定位方法。(5)在实验室环境下使用V-STARS建立三维控制场,搭建了实验平台模拟实际测量过程中人戴头盔改变位姿进行测量任务的场景,利用激光跟踪仪配合T-probe完成了测量系统的精度验证。
其他文献
水体运动时会携带大量泥沙,在流速变缓区域往往会造成泥沙淤积。这给河道整治、港口运输以及水库淤积治理等带来重要影响,因此需要利用高精度含沙量测量仪对水体含沙量进行测量。然而目前没有含沙量测量仪计量标准装置,无法对这些仪器进行有效标定,使得仪器数据可靠性差,在使用中造成了巨大经济损失。因此,搭建含沙量测量仪计量标准装置可以填补国内含沙量测量仪计量领域的空白,有效减少水运工程领域的经济损失,带来巨大的社
学位
弹性波广泛应用在各类装备的结构健康无损检测中。目前常用的弹性波传感器都是基于压电效应的,易受电磁干扰,具有谐振性,测量频带窄。光纤布拉格光栅(FBG)凭借其可嵌入、可组网、没有谐振性、抗电磁干扰等优势受到越来越广泛的应用,但是仍缺少面向宽频弹性波检测的解调系统。因此,本文开发了基于双FBG+PZT强度解调的宽频弹性波测量系统,并进行了两个典型的应用试验。主要研究工作包括:1.提出基于双FBG+PZ
学位
高效率强太赫兹辐射源的开发是进一步扩大太赫兹应用领域的重要前提条件之一。经过数十年的发展,科研人员已成功实现了从气体和固体中产生太赫兹波。然而作为生活中最常见的液体,液态水却鲜少被认为是一种潜在的太赫兹源,其主要的原因便是液态水对太赫兹频段具有极强的吸收系数。因此,寻找合适的方法削弱液态水对太赫兹波的吸收作用,并构建相应的宽带强场太赫兹辐射源系统,是对液态水产生太赫兹波这项研究的核心工作。基于以上
学位
频率分辨光开关法(Frequency Resolved Optical Gating,FROG)是目前最为通用的超短激光脉冲时域电场测量技术之一,其测量结果能够完备地表征被测超短激光脉冲电场的载波包络相位,因具有其还原结果准确、通用性强等优势而得到了广泛的应用。近年,层叠成像算法(Ptychographic)被用于FROG的测量迹线还原。该算法能够对稀疏采样的迹线进行还原,具有收敛速度快的优势。但
学位
动态坐标测量是开展运动过程监控与建模的基础。视觉测量方法因其精度高,非接触式测量等特点,在动态坐标测量领域具有重要应用,但基于面阵传感器的双目系统帧率有限,在高速测量方面存在局限性。基于线阵传感器的双目正交分光成像系统速度快、分辨率高,在动态测量中具有较大的发展潜力。然而目前该系统仍存在光斑坐标提取效率低、结构参数难以确定、同名点匹配困难等不足。针对上述问题,本文从实时多光斑亚像素级定位、系统结构
学位
基于深度学习的立体匹配方法,将模型建立在学习复杂图像特征的基础上,避免了人工特征一致性信息表达能力不足的问题,从而获取高精度、高鲁棒的深度数据,满足了无人驾驶、机器人引导等工程任务中三维信息精准感知的需求。然而,现有基于深度学习的高精度立体匹配方法对计算成本有着较高要求,难以在计算资源受限的条件下实现。针对这一问题,本文采用基于门控循环单元(Gated Recurrent Unit,GRU)的循环
学位
激光扫描测量系统是一种新型光学大尺寸测量系统,凭借其可拓展的分布式网络测量模式、高精度多任务并行测量等优势,已经广泛应用于飞机、船舶等大型装备制造领域。测量系统以旋转激光平面作为媒介,结合时空转换原理实现角度交会定位,其中光电信号时域信息的精确性是影响测量精度的重要因素。测量系统中同步光信号标志着发射站的转台单周旋转至零位起点,提供扫描光旋转的基准时刻。信号处理电路根据同步光与扫描光信号的时间间隔
学位
磁流体动力学(MHD)角振动传感器具有抗冲击、宽频带和大量程特性,极其适合于碰撞试验中的角振动测量,美国ATA公司已将其应用于汽车碰撞试验中,而国内尚未开展相应研究。本课题开展基于MHD角振动传感器的碰撞试验系统研究,以评估课题组自研的MHD角振动传感器在碰撞试验中能否敏感冲击角速度,为应用于汽车碰撞试验提供理论基础,论文主要研究内容如下:(1)针对国内外汽车碰撞试验规范中高加速度、高角加速度的指
学位
机匣作为航空发动机的重要组成部分,其圆度的设计以及安装准确性直接影响航空发动机的性能。传统基于视觉法的机匣形变检测方法因光线遮挡而导致仅能检测局部叶尖间隙或机匣端面圆度而无法实现机匣内壁全周向圆度检测,而传统限位法通过各型夹具装夹实现机匣形变的间接测量,测量精度受限,同时也无法实现机匣全周向圆度检测。为此,本文提出了一种基于电容间隙测量原理的机匣内壁全局、全周向圆度检测方法,聚焦间隙测量模型构建、
学位
在轨航天器微角振动干扰会严重影响其有效载荷的姿态稳定度和指向精度,限制了分辨率等性能的进一步提高。因此,需要能够检测控制亚微弧度千赫兹带宽的微角振动。磁流体动力学(Magnetohydrodynamics,简称为MHD)微角振动传感器具有带宽高、噪声低、体积小、耐冲击等优点,是其成为高精度航天器微角振动检测最佳选择。目前国内对MHD微角振动传感器的研究主要体现在结构设计、噪声分析、低频拓宽等方面,
学位