学习进阶视域下的牛顿运动定律教学

来源 :湖北师范大学 | 被引量 : 0次 | 上传用户:my363
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
牛顿运动定律是高中物理尤为重要的一块内容,同时在力学当中也占据着举足轻重的地位,但学生在学习这部分内容的时候由于错误的前认知往往不能形成正确的认识,教师也能够认识到学生在学习时出现的问题,但在教学中却无从下手,不知道学生在形成认知的哪个具体阶段出现了问题。学习进阶理论能深入分析学生在学习某个知识时,在不同阶段所能达到的水平,该水平反映了学生对知识的掌握程度。利用学习进阶理论,能够帮助教师了解学生在实现阶层跃迁时所遇到的困难,进行合理的教学。本研究主要围绕三个研究问题进行展开:(1)学生在学习牛顿运动定律时的思维发展路径分为了哪几个阶层,每个阶层所达到的目标具体是什么;(2)学生学习该章节知识时出现了哪些问题;(3)牛顿三定律各阶层水平对教师教学有什么启示。本文首先通过文献研究法对人教版初、高中课程标准进行分析,确定学生的进阶起点与终点,同时对人教版高中物理教材进行梳理知识结构,并结合已有的关于牛顿运动定律学习进阶文献,总结出中间各个水平;其次通过访谈法与一线高中物理教师进行交流,了解学生在实现阶层跃迁时出现的问题,并收集教师对已有的进阶假设的修改建议,对各层级描述进行修改;再次,通过案例研究法收集高一学生平时的习题册,总结出学生易错、正确率较低的习题,对习题的正确率——集中度进行二维分析,并对比期中、期末考试的答题情况,了解学生在经过一段时间的训练后的思维变化情况;最后,结合进阶假设理论,针对教师教案,对教师的教学提出教学建议。研究结果表明:(1)大部分学生在刚开始学习牛顿第一定律和牛顿第三定律均能够达到阶层4,经过一段时间后的训练都能达到阶层5;(2)学生在刚学习牛顿第二定律时,普遍能达到阶层3和阶层4,经过一段时间的训练后基本能达到阶层4,但还是无法到达最高阶层。本研究最后提出教师在教学时的教学策略,用于帮助一线教师有针对性的根据学生的问题改进课堂教学。
其他文献
学位
学位
学位
在对称密码系统中,分组密码通常用S-盒来加密.用于S-盒的函数必须有较低的差分均匀度、较高的非线性度和大于等于3的代数次数.此外,这些函数还应该是代换-置换网络中的置换.本文中,我们构造了几类具有好的密码学性质的低差分置换,可用于分组密码中S-盒的设计.基于在具有2n个元素的有限域F2n的一个子域上对逆函数x-1进行置换的思想,我们构造了一批具有最高代数次数和较高非线性度的低差分置换.第三章是本文
神经网络是一种用来模拟人脑结构和功能进行信息处理的系统,它在联想记忆、优化、信号处理、模式识别和保密通信等方面有着广泛的应用,而这些应用都建立在系统具有理想的动态行为和同步状态上.此外,时滞在神经网络的实现中是不可避免的,它的存在往往会导致系统产生不良行为.因此,对时滞神经网络的动态特性进行研究是具有理论和现实意义的.本文致力于几类时滞神经网络的研究.利用线性矩阵不等式方法、Lyapunov泛函方
随着多智能体系统协同控制在社会、医疗等方面的广泛应用,双边包含问题作为其中的一个分支已引起广泛关注。在实际情形下,形式各异的干扰不可避免地会影响多智能体系统。外部扰动不但妨碍智能体的正常运作,还削弱了系统的稳态性能。为了达到精度更高、执行力更强的多智能体系统协同控制,本文主要探讨抗干扰双边包含控制的分析和控制器设计问题,分别考虑有界干扰、由线性或者非线性外干扰系统产生的干扰等现实因素,相应地提出了
当前,卷积运算在图像处理以及其它许多领域有着广泛的应用。而人工智能下的卷积神经网络运算过程是重复操作计算,该过程计算缓慢且需要大量的计算步骤。尤其是随着信息革命的到来,互联网上的数据以指数爆炸的形式增长,而且加上卷积神经网络的网络结构的不断复杂、网络层数的不断增加,导致卷积神经网络在通常训练的过程中需要大量的计算资源来处理信息,经典卷积运算无法满足强人工智能对当今社会对计算速度和计算效率的要求。但
近年来,人工神经网络由于其特有的自学习能力一直是一个备受关注的对象,这使得神经网络在组合优化、信号处理、并行计算等领域得到了广泛的应用.然而这些应用实际上是基于其丰富的动态特性,包括稳定性、同步性、耗散性、混沌性等.因此,对不同神经网络动态行为的理论研究是非常重要且具有实际意义的.本文主要研究了几类神经网络的稳定和同步行为.利用矩阵测度法、带偏差变元的微分方程理论、事件触发控制、Lyapunov函
多重神经网络作为神经网络的一种,由于其独有的特性,近些年吸引了越来越多的学者的研究.类似鱼群的迁徙,无人机组,计算机组等方面都有多重神经网络的身影,但是多重神经网络应当还有更大的应用空间,但这都必须基于理论的研究,因此对于多重神经网络进行进一步的研究是有意义和必要的.本文主要研究了几类多重神经网络的同步行为,通过Lyapunov-Razumikhin方法、线性矩阵不等式、微分包含理论以及合理的不等
现在光纤传感器发展越来越迅速,新颖的光纤传感器层出不穷,如今中国传感器市场突破2000亿,而信息化时代对传感器的需求还在持续增长,其中光纤传感器备受关注,因此结构简单紧凑、制作简单、有大规模生产潜力的光纤传感器成为研究热点。而飞秒激光器近年来在光纤微加工方面的突出表现为光纤传感器的发展提供了新的可能,飞秒激光加工精度高、损伤小,可以完成几十甚至几个微米的结构制作,使结构更加紧凑;飞秒激光结合加工平