用于建筑机器人的室内三维建模及外传感技术研究

来源 :电子科技大学 | 被引量 : 0次 | 上传用户:china_jjf_wolf
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
对于室内环境三维模型构建,目前常规方法是使用三维激光扫描仪来实现,但是三维激光扫描仪不仅价格昂贵而且体积较为庞大,同时构建三维模型耗时较长。视觉同步定位与地图构建(SLAM)技术具有精度高、速度快、系统体积小的特点,本文对基于深度相机的视觉SLAM算法进行了深入研究学习,并将视觉SLAM技术结合建筑抹灰机器人应用于建筑室内环境建模,解决了建筑室内三维整体模型实时构建问题,并且对得到的三维模型进行后处理,作为建筑抹灰机器人外传感器,为其抹灰工作提供地图以及相应的数据,使建筑抹灰机器人工作效率及工作效果有较大提升。本文主要进行了以下几方面研究:1、针对现有特征点提取算法ORB提取图像特征点分布并不平均且特征点均匀化步骤耗时长的问题提出了相应改进方案。在特征匹配阶段,基于图像特征点分布范围的相近性,同时结合ORB特征点的方向性提出一种适用于ORB特征的特征匹配方法,并与词袋模型结合,限制匹配查找范围,进而提高了特征匹配准确度和匹配效率,最后引入旋转直方图进行匹配点对剔除。实验证明,本文方法在特征提取平均性以及特征匹配效率上都较传统方法有所提升。2、在相机运动估计问题中,对于运动估计易丢失等问题,本文系统融合多种运动估计模式,并利用非线性优化不断优化相机位姿,以获得更为精准的相机位姿数据,保证了即使系统在运动跟踪失败后也能利用重定位模式迅速找回原来的位置,使系统稳定运行。3、在后端优化中,提出了一种改进的关键帧提取方法并利用关键帧间的共视冗余程度来剔除冗余关键帧,以进一步降低后端优化的计算复杂度。然后利用基于视觉词袋模型的回环检测技术进行系统回环检测判断,并通过闭环连续性对回环检测结果进行校验。最后针对本文系统中四种关键帧位姿或地图点位置的图优化情况,根据各自特点分别采用不同优化方案,以减少系统优化时间,并提高了整个系统的实时性。最后使用标准数据集进行了实验,同时还在真实建筑室内环境进行了实地三维整体建模实验,由结果可以看出本文提出的一系列SLAM优化方法具有较好的实时性、鲁棒性以及较高精度。
其他文献
量子力学本身的特殊性质使得量子算法在解决某些问题上具有量子优势。本文着眼于量子查询算法以及量子强化学习算法,提出了两种不同的解决特征值问题的量子算法,这两个新的方法相比较于经典算法都具有量子优势。在第一个工作中,我们受到不动点搜索算法的启发,提出了基于查询的方法来解决特征值求解问题。我们将此问题转化为基于查询的搜索问题,并且将未知的特征态设定为所求问题的目标态。我们的方法主要思想是通过不动点Gro
随着信息时代的到来,计算机不仅促进了社会的发展,也改变着人们的生活。但冯诺依曼体系计算机的发展将会逐渐受到限制。近些年,量子计算逐渐受到人们的关注,量子计算中存在纠缠和叠加等特性,可以利用这些特性实现加速。将量子计算与经典的机器学习算法相结合,有望解决数据量巨大和训练速度缓慢等棘手的问题。本论文主要分为两部分,一部分我们主要介绍了量子计算的基础和量子变分电路研究现状及背景,量子变分电路是在量子本征
机器学习已然成为现代科学的基石,它被广泛地应用于所有科学领域。然而,它于计算电磁学(CEM,Computation Electromagnetics)算法相结合还有待研究。在本文中,我们将基于深度学习(DL,Deep Learning)的机器学习方法与传统的FDTD(Finite-Difference TimeDomain)算法相结合,研究DL-FDTD算法原理和实现技术,并应用在计算电磁学中。本
目的:本研究旨在系统评价机器学习算法预测脓毒症发病及病死率研究的方法学和预测模型,提出机器学习预测研究报告标准,并以此为基础创建危重症患者数据集,进行脓毒症发病和预后预测研究。方法:研究分为两个部分。第一部分为系统评价(systematic review)研究。检索中国知网、万方数据库、Pub Med、Web of Science等数据库中机器学习算法用于脓毒症预测文献,时间从2010年1月至20
随着互联网的普及和飞速发展,网络安全问题也愈发重要。Web日志记录了网站的运行信息和用户的所有操作,通过日志分析开发者可以检测出网络的异常流量,及时发现漏洞。由于传统的基于规则和模式匹配的日志分析技术对海量数据的处理效果不佳,也无法应对形式复杂多样的网络攻击,将机器学习和深度学习技术应用到日志分析领域是大势所趋。本文提出了一种自定义特征的方法,对比于其他基于统计信息的特征提取,该方法将特征提取的重
多智能体系统是一种复杂的网络系统,其应用涉及了多个领域,如无人机协作控制、传感器网络设计以及机器人编队等。近年来,多智能体系统的一致性问题受到了许多学者的广泛关注。如何设计恰当的协议,使得系统内个体间的状态能够达到一致是研究多智能体一致性的关键问题。目前对于一致性的研究大都只涉及一阶、二阶,缺乏对具有有限子群的高阶系统尺度一致性的研究。本文主要研究具有有限子群的离散时间三阶多智能体系统的尺度一致性
机器学习的一个核心主题是顺序决策,这是要求在不确定的环境中依据决策规则选择要执行的一系列动作,以实现某些目标的任务。作为机器学习的重要子领域,强化学习提供了一种解决这类任务的正式框架。然而,解决比较复杂的任务时,它所需要的样本数量难以忍受;另外,当任务发生改变时,原来的解决方案就无法应用,学习必须要重新开始。这些问题促使我们利用现有知识来改善强化学习过程。近年来,迁移学习作为一种利用先验知识来加速
深度神经网络由于具有强大特征提取和表征的能力,已经在计算机视觉、自然语言处理、智能决策等方面展现了卓越的性能。近年来,深度神经网络的设计引起了研究人员的广泛关注,各种高性能和高效率的神经结构不断涌现。但是手工设计一个神经网络需要大量的专家经验和反复的实验验证。因此,神经结构搜索方法被提出来在给定的任务上自动设计神经结构。基于梯度的one-shot神经结构搜索方法在高效实现结构搜索的同时,还具有不错
在高压变电设备的放电检测、航空发动机结构无损检测等领域的超声波探测应用中,往往要求超声波传感器需要具备体积小、质量轻、前置无源、抗电磁干扰、耐高温高压的特性。本论文针对光纤MOEMS(Micro-Opto-Electro-Mechanical Systems)超声传感器的信号解调需求,研究了一种基于光纤EFPI(Extrinsic FabryPerot Interferomter)传感器的高速四通
非合作信号解析技术已广泛应用于电子信息对抗等领域。非合作的接收机通过这种技术利用截获信号取得发射机的一些信息,以实现破译敌方情报或干扰敌方通信等目的。在现代数字通信系统中,数据通常以帧为单位进行传输。合作方的接收端首先会采用适当的算法并结合帧结构的信息来获取帧同步。然而这些对于非合作的接收机来说是未知的,所以其需要利用截获信号对帧结构进行识别。在获取帧同步后,倘若非合作的接收机想要进一步获取数据部