选区加热预制有益皱纹管坯及其内高压成形规律研究

来源 :太原理工大学 | 被引量 : 0次 | 上传用户:weiandlu
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
铝、镁等轻质合金薄壁构件由于轻量化效果好得到了广泛的应用,但室温下铝、镁等轻质合金材料塑性较低,在液压成形过程中极易产生破裂等缺陷。因此,本文提出基于选区加热预制有益皱纹管坯的方法,并进行起皱管坯的内高压成形实验研究。研制了选区加热预制有益皱纹管坯的起皱实验装置和起皱管坯液压成形实验装置,分析了非均匀温度场中5052铝合金薄壁管坯多个皱纹的起皱规律和起皱管坯的液压成形规律,揭示了管坯在非均匀温度场中的失稳起皱机制,获得了三凸起变径管,为后续工业应用提供了理论与技术支撑。研制出选区加热与轴压和内压联合加载预制有益皱纹管坯的实验装置,对5052铝合金管坯进行了起皱实验。研究了非均匀温度场中5052铝合金管坯在不同工艺参数条件下预制单个和多个皱纹过程中的失稳起皱行为;利用Gauss Amp函数对皱纹的几何轮廓形状进行定量分析,建立了相关的数学函数表达式;对管坯起皱过程进行力学分析,探究了皱纹区域管坯的轴向壁厚变化率。结果表明,退火态管坯在275℃及以上时在起皱区域最高温度处形成皱纹;当支撑内压为5.5 MPa时可以获得壁厚变化率最小和分布最为均匀的起皱管坯;在一定的起皱温度、支撑内压、轴向压缩量和起皱位置间距下,5052铝合金管坯可在管坯不同位置处形成多个轴对称皱纹,且形成过程中皱纹之间相互没有影响。搭建了起皱管坯液压成形实验装置,对5052铝合金管坯进行了自由胀形和内高压成形实验。研究了原始管坯和起皱管坯在不同胀形区长度条件下的胀形性能,分析了管坯在自由胀形过程中的破裂压力、胀形后试件的极限膨胀率、外轮廓形状和轴向壁厚分布规律;探索出成形三凸起变径管所用的有益皱纹管坯的最佳起皱工艺参数,成功获得三凸起变径管。结果表明,皱纹的存在极大地提高了5052铝合金管坯的极限膨胀率,与原始管坯相比,无支撑内压时获得的起皱管坯,其极限膨胀率从6.29%提高到25.39%;利用起皱工艺参数为250℃,4 mm,5.5 MPa/350℃,10 mm,2 MPa/400℃,6 mm,1.33MPa的三皱纹起皱管坯可以成功制取出三凸起变径管,三个凸起的最大膨胀率依次为21.1%、43.4%、32.9%。
其他文献
金刚石拥有极高的硬度和热导率、极低的摩擦系数及良好的化学稳定性等优异的物理化学性质,是一种极佳的耐磨强化材料。利用化学气相沉积(CVD)法在硬质合金(WC-Co)刀具表面沉积一定厚度的金刚石涂层,可极大地改善刀具的耐磨性能,已成为目前的研究热点。但是,在沉积金刚石涂层的过程中,基体中的Co元素作为催化相,会抑制金刚石的形核和长大,催化石墨相的生成;除此以外,硬质合金与金刚石之间热膨胀系数(CTE)
学位
柴油机因其压缩比高、热效率转化好、利用率高等优点在我国被广泛应用于众多领域,然而因此造成的噪声污染同样不容忽视。柴油机的噪声主要有空气动力学噪声、燃烧噪声和机械噪声,而由活塞敲缸导致的噪声是机械噪声中最主要的噪声源之一。随着柴油机向高速化发展,这种现象会日益加重,不仅影响发动机的性能,严重时还会出现缸套穴蚀现象,甚至穿透缸套导致发动机报废,危及司乘安全。本文开展了柴油机活塞敲缸行为的瞬态动力学建模
学位
有机-无机杂化卤化物钙钛矿材料具有优异的光电性能,如长载流子寿命、高载流子迁移率、高光吸收系数和带隙可调节等,可应用于制备多种光电器件,其中钙钛矿太阳能电池在过去十余年中发展势头迅猛。目前,钙钛矿薄膜一般采用溶液法制备,由于结晶速度快且不宜控制,所制得的多晶钙钛矿薄膜内部、晶界和表面不可避免地存在一些间隙、空位或其它缺陷。尽管钙钛矿材料对缺陷的容忍度较高,但随着钙钛矿太阳能电池光电转换效率(pho
学位
镁空气电池具有比能量密度高、使用简单安全以及成本低的特点,为解决当代环境污染和化石能源短缺问题提供了一条有效解决路径。然而,镁空气电池阳极材料仍然面临着较高的阳极极化以及较低的阳极利用率等瓶颈问题,这在一定程度上阻碍了镁空气电池的广泛应用。一般而言,合金化和塑性变形是调控镁阳极材料微观组织从而改善镁阳极的放电性能有效手段。最近的相关研究指出Mg-Bi基合金是一种非常有潜力的镁空气电池用阳极材料,但
学位
随着化石燃料的大量使用,现如今全球的能源和环境问题越发严峻,因此亟需开发新型清洁能源。氢气(H2)是一种环境友好、高比能密度、无碳的能源载体,被认为是化石能源的优良替代品。目前,氢气主要来自化石化合物,是不可再生资源。电化学水分解是获得氢气的有效且可再生的方式。在过去的几十年中,调节催化剂的化学成分和形态一直是提高碱性水电解中析氢反应(HER)活性和稳定性的主要途径。在调节缺陷工程、相变和掺杂以增
学位
本文通过喷射沉积制备了Al-12Zn-2.4Mg-1.1Cu合金,通过热挤压获得高含量的析出相(记为“AE”合金),基于均匀化处理获得高含量溶质原子(记为“AS”合金)。通过对两种合金微观组织,力学性能,加工硬化及软化行为等方面进行对比,探讨了析出相和溶质原子对高Zn铝合金力学性能,加工硬化及软化行为的影响规律。另外,对Al-12Zn-2.4Mg-1.1Cu合金的高温变形行为进行了研究,通过计算拟
学位
作为高性能轻型结构首选材料的镁合金,其硬度较低和耐磨性差等问题的存在使其应用受限。通过向镁及其合金中添加相应的增强相得到镁基复合材料,可以使其强度、硬度和耐磨性等得到不同程度的改善。选择硬度高、耐磨性好,以及与基体热膨胀系数差较小的材料作为增强相,可以使基体的性能得到更大的提升。高熵合金作为一种新型多元合金,不仅具有强度、硬度、耐磨性,而且其具有的良好界面润湿性,使复合材料及界面性能得到提高。基于
学位
超快激光技术在国防、工业、医疗等领域具有重要的应用价值,基于对人眼和光电器件的保护需要,开发光限幅材料成为目前光电产业发展的核心工作之一。双光子吸收是光限幅效应的主要机理之一,是一个瞬态响应的非线性吸收过程。碳量子点(Carbon quantum dots,CQDs)具有原料广泛、制备简单、低生物毒性以及突出的线性和非线性光学性质等优点,所以,基于双光子吸收机制的CQDs可作为一种潜在的光限幅材料
学位
当前,节能减排已成为世界各国在发展过程中需要考虑的核心要点。2020年中国明确提出2030年“碳达峰”与2060年“碳中和”的目标。道路交通中的尾气排放在二氧化碳的来源中占比很重,降低汽车排量比较有效的手段是在汽车中使用轻量化部件来降低汽车自重。镁合金作为最轻的金属结构材料,在实现汽车的轻质化方面有巨大优势。镁金属有诸多优良性能:高的比强度和比刚度、良好的切削加工性能、有优异的电磁屏蔽性能等。而且
学位
近年来,随着航空航天事业的迅速发展,对高超声速飞行器有了更迫切的需求,寻找具有优异性能的轻质耐高温材料来制备飞行器薄壁构件是提高其性能的关键。NiAl金属间化合物使用温度高、密度低、比强度高和抗氧化性能优异,成为目前最具有发展潜力的高温结构材料之一。但是,NiAl合金室温塑性差,采用传统方法难以成形曲面薄壁构件,严重阻碍了NiAl合金的应用和发展。为了解决NiAl合金成形难的问题,本文采用“先成形
学位