论文部分内容阅读
在工业生产中,设备的健康状态与生产安全和生产质量息息相关,通过故障诊断技术可以有效的监测设备状态,预防恶性事件的发生,因此故障诊断技术的发展具有重要的理论和应用价值。在传统的故障诊断方法中,一般通过分析设备的电流、温度或振动等信号,结合经验参数判断设备的状态。其中,设备振动信号的针对性强、与故障位置的关联性好,因此振动信号逐步成为设备故障诊断方法研究中常用的信号类型。本文中考虑到在实际检测场景中可能面临高温、腐蚀等不利于接触式采集振动信号的因素,提出通过非接触式测量音频信号的方法弥补极端条件下振动信号采集受限的问题,并针对实际故障诊断任务中的挑战,结合设备振动和声音信号,对故障诊断算法展开研究。
传统的故障诊断方法主要是通过人工观测或者通过设备的参数判断其运行状态,在实时性和精确性上还有较大的提升空间。随着信号处理技术和机器学习方法研究的深入,针对生产设备的故障诊断方法的准确度和鲁棒性已有显著提高,但在实际应用中仍存在诸多挑战:在工业生产环境中,受到环境噪声和其他噪声影响,采集到的设备振动信号被干扰,设备故障特征模糊,导致故障分类精度降低,误检率、漏检率较高;在己知设备故障模式和故障样本数据不足的情况下,通过故障分类方法无法及时检测出未知类型异常故障状态。为解决以上问题,同时考虑到实际生产条件下设备、关键零部件的状态检测任务的需求,本文分别针对故障诊断问题中已知故障样本数据条件下设备故障分类和故障样本数据不足条件下设备异常检测算法进行了研究,主要问题及研究内容如下:
1.针对工厂环境噪声和高斯噪声影响下设备故障分类的问题,本文研究了谱峭度故障信息增强(Fault characteristics enhancement based on spectral kurtosis,SKFE)双流二维卷积神经网络(Dual-stream 2-dimension convolutional neural networks,DS2DCNN)故障分类算法SKFE-DS2DCNN。算法中提出了基于谱峭度的故障信息增强方法SKFE、振声信号双流二维特征图扩展方法以及构建了带有双流特征图融合模块和深层特征提取模块的DS2DCNN网络模型。主要研究内容包括:(1)提出SKFE方法增强了信号中表征设备故障的信息,抑制设备信号频谱中的噪声干扰,增强故障信息相关的分量,提高频谱中故障信息的显著程度。(2)提出了振声信号双流二维特征图扩展方法,将一维的特征向量扩展为双流二维特征图,特征图中包含了一维特征向量的信息以及信号帧间的关联信息,提高了特征表达的精确程度。(3)构建带有双流特征图融合模块和深层特征提取模块的DS2DCNN网络模型对设备特征图的融合和深度特征的提取,相比于之前研究中提出的故障分类方法,提高了高斯噪声影响下的故障分类精度,同时在复杂实际工厂噪声影响下得到了较精确的故障分类结果。
2.针对强高斯噪声影响下,设备振声信号频谱特征质量受影响导致故障分类不精确的问题,本文研究了基于频谱优化特征和支持向量机的故障分类算法,提出了基于低阶矩谱(Lower order moment spectrum,LOMS)的故障分类算法,并在基于低阶矩谱故障特征和频谱图的基础上,进一步提出了基于频谱图局部波动特征(Spectrogram local fluctuation feature,SLFF)的故障分类算法。通过提取强高斯噪声影响下区分度和鲁棒性更优的设备故障特征,提高了低信噪比条件下故障分类的精度。主要研究内容包括:(1)在基于LOMS的故障分类算法中,通过提取信号的频谱低阶矩特征,提升不同故障模式样本特征表达的差异性,降低噪声对特征表达的影响,提高设备信号特征表达的准确度,从而在利用传统故障分类器进行故障分类的实验中获得了精确的诊断结果。(2)在基于SLFF的故障分类算法研究中,根据SKFE-DS2DCNN故障分类算法中频谱图构建方法及基于低阶矩谱的故障分类方法中不同类型样本之间特征波形差异,通过构建的设备频谱图和提取的局部波动特征表征设备频谱的整体波形和变化趋势,提高了高斯噪声干扰下设备故障特征表达的鲁棒性,并在利用传统故障分类器模型支持向量机的条件下得到了良好的故障分类结果。
3.为解决已知故障模式和样本数据不足条件下,无法通过故障分类方法精确诊断设备未知类型异常情况的问题,针对样本在特征空间内分布的不同情况,分别提出多分支层级高斯模型(Multi-branch hierarchical gaussian model,MBHGM)异常检测算法和抗体群优化人工免疫系统(Antibody population optimized artificial immune system,APO-AIS)的设备故障异常检测算法,在缺乏故障样本数据条件下,通过构建的异常检测模型实现对设备的已知工作状态的精确识别,同时可有效检测出设备发生的未知类型异常情况。主要研究内容包括:(1)在MBHGM设备异常检测算法中,针对样本在特征空间内近似服从高斯分布的情况提出了MBHGM异常检测模型,该模型主要包含了多分支特征高斯子模型完成对样本得分的评估以及层级得分高斯子模型实现根据样本得分判定样本的类别,相比于高斯混合模型和多元高斯模型,该算法在保证检测精度的条件下,简化了训练模型参数的过程,且具有更好的泛化能力和实用性。(2)针对样本分布不服从标准分布的情况,提出APO-AIS设备故障异常检测算法,通过对算法的迭代进化、群体选择及判定区域划定方法的优化,提高了抗体群的质量以及判定区域自由度,提高了模型针对样本分布不符合标准分布模型情况下的适应性,从而达到精确检测设备状态和异常事件的目的。
考虑到实际诊断任务中不同的客观条件,本文提出的故障诊断算法既适用于针对振动信号的设备故障诊断任务,又可以应用于基于音频信号的设备故障诊断问题中,在保证诊断精度的基础上拓展了故障检测方法的适用场景。在本文中,通过公开的轴承振动数据和利用高精度音频传感器采集的实际生产设备运行音频数据,验证了提出的设备故障分类算法、异常检测算法及相关方法的有效性和鲁棒性。
传统的故障诊断方法主要是通过人工观测或者通过设备的参数判断其运行状态,在实时性和精确性上还有较大的提升空间。随着信号处理技术和机器学习方法研究的深入,针对生产设备的故障诊断方法的准确度和鲁棒性已有显著提高,但在实际应用中仍存在诸多挑战:在工业生产环境中,受到环境噪声和其他噪声影响,采集到的设备振动信号被干扰,设备故障特征模糊,导致故障分类精度降低,误检率、漏检率较高;在己知设备故障模式和故障样本数据不足的情况下,通过故障分类方法无法及时检测出未知类型异常故障状态。为解决以上问题,同时考虑到实际生产条件下设备、关键零部件的状态检测任务的需求,本文分别针对故障诊断问题中已知故障样本数据条件下设备故障分类和故障样本数据不足条件下设备异常检测算法进行了研究,主要问题及研究内容如下:
1.针对工厂环境噪声和高斯噪声影响下设备故障分类的问题,本文研究了谱峭度故障信息增强(Fault characteristics enhancement based on spectral kurtosis,SKFE)双流二维卷积神经网络(Dual-stream 2-dimension convolutional neural networks,DS2DCNN)故障分类算法SKFE-DS2DCNN。算法中提出了基于谱峭度的故障信息增强方法SKFE、振声信号双流二维特征图扩展方法以及构建了带有双流特征图融合模块和深层特征提取模块的DS2DCNN网络模型。主要研究内容包括:(1)提出SKFE方法增强了信号中表征设备故障的信息,抑制设备信号频谱中的噪声干扰,增强故障信息相关的分量,提高频谱中故障信息的显著程度。(2)提出了振声信号双流二维特征图扩展方法,将一维的特征向量扩展为双流二维特征图,特征图中包含了一维特征向量的信息以及信号帧间的关联信息,提高了特征表达的精确程度。(3)构建带有双流特征图融合模块和深层特征提取模块的DS2DCNN网络模型对设备特征图的融合和深度特征的提取,相比于之前研究中提出的故障分类方法,提高了高斯噪声影响下的故障分类精度,同时在复杂实际工厂噪声影响下得到了较精确的故障分类结果。
2.针对强高斯噪声影响下,设备振声信号频谱特征质量受影响导致故障分类不精确的问题,本文研究了基于频谱优化特征和支持向量机的故障分类算法,提出了基于低阶矩谱(Lower order moment spectrum,LOMS)的故障分类算法,并在基于低阶矩谱故障特征和频谱图的基础上,进一步提出了基于频谱图局部波动特征(Spectrogram local fluctuation feature,SLFF)的故障分类算法。通过提取强高斯噪声影响下区分度和鲁棒性更优的设备故障特征,提高了低信噪比条件下故障分类的精度。主要研究内容包括:(1)在基于LOMS的故障分类算法中,通过提取信号的频谱低阶矩特征,提升不同故障模式样本特征表达的差异性,降低噪声对特征表达的影响,提高设备信号特征表达的准确度,从而在利用传统故障分类器进行故障分类的实验中获得了精确的诊断结果。(2)在基于SLFF的故障分类算法研究中,根据SKFE-DS2DCNN故障分类算法中频谱图构建方法及基于低阶矩谱的故障分类方法中不同类型样本之间特征波形差异,通过构建的设备频谱图和提取的局部波动特征表征设备频谱的整体波形和变化趋势,提高了高斯噪声干扰下设备故障特征表达的鲁棒性,并在利用传统故障分类器模型支持向量机的条件下得到了良好的故障分类结果。
3.为解决已知故障模式和样本数据不足条件下,无法通过故障分类方法精确诊断设备未知类型异常情况的问题,针对样本在特征空间内分布的不同情况,分别提出多分支层级高斯模型(Multi-branch hierarchical gaussian model,MBHGM)异常检测算法和抗体群优化人工免疫系统(Antibody population optimized artificial immune system,APO-AIS)的设备故障异常检测算法,在缺乏故障样本数据条件下,通过构建的异常检测模型实现对设备的已知工作状态的精确识别,同时可有效检测出设备发生的未知类型异常情况。主要研究内容包括:(1)在MBHGM设备异常检测算法中,针对样本在特征空间内近似服从高斯分布的情况提出了MBHGM异常检测模型,该模型主要包含了多分支特征高斯子模型完成对样本得分的评估以及层级得分高斯子模型实现根据样本得分判定样本的类别,相比于高斯混合模型和多元高斯模型,该算法在保证检测精度的条件下,简化了训练模型参数的过程,且具有更好的泛化能力和实用性。(2)针对样本分布不服从标准分布的情况,提出APO-AIS设备故障异常检测算法,通过对算法的迭代进化、群体选择及判定区域划定方法的优化,提高了抗体群的质量以及判定区域自由度,提高了模型针对样本分布不符合标准分布模型情况下的适应性,从而达到精确检测设备状态和异常事件的目的。
考虑到实际诊断任务中不同的客观条件,本文提出的故障诊断算法既适用于针对振动信号的设备故障诊断任务,又可以应用于基于音频信号的设备故障诊断问题中,在保证诊断精度的基础上拓展了故障检测方法的适用场景。在本文中,通过公开的轴承振动数据和利用高精度音频传感器采集的实际生产设备运行音频数据,验证了提出的设备故障分类算法、异常检测算法及相关方法的有效性和鲁棒性。