HFRC-F高压脉冲电源系统的研制与测试

来源 :华中科技大学 | 被引量 : 2次 | 上传用户:efox_5
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
HFRC-F(HUST Field Reversed Configuration-Formation)是专门用于场反等离子体形成方法研究的装置,场反等离子体形成区高压脉冲电源系统是其核心部件。本文围绕HFRC-F装置形成区高压脉冲电源系统开展了研究工作,完成了电源方案设计与结构设计,完成了氢闸流管高压脉冲触发器设计,并完成了电源系统的研制与测试。首先,完成了电源系统的电气参数设计与整体结构设计,同时,针对常规母排杂散参数较大的问题,开展了高压叠层母排的设计研究。基于场反等离子体形成过程对形成磁场的需求,完成了HFRC-F高压脉冲电源系统的电路拓扑及电气参数的设计。完成了电源的整体结构设计,并结合HFRC-F装置线圈参数,分析了高压脉冲电源系统的运行工况。针对母排杂散参数较高而影响其放电效率的问题,设计了一套高电压叠层母排,其将电源支路杂散电感降低至百n H量级,提高了电源放电效率,降低了续流阶段线圈电流的振荡。其次,针对氢闸流管高功率、高隔离电压脉冲触发器的研制问题,设计并研制了高压悬浮型脉冲触发器。针对传统氢闸流管触发器中高压隔离变压器体积大、成本高的问题,提出了悬浮式脉冲触发器,避免了大量隔离变压器的使用。本文完成了悬浮触发器的脉冲形成回路设计、加热电路设计及绝缘设计,并完成了触发器的研制与测试。测试结果表明,触发器可在30k V悬浮高压下正常工作并稳定导通氢闸流管,开路触发电压峰值可达9k V,带载时触发电压上升率为10k V/μs,触发脉冲时间抖动约7ns,满足设计要求。最后,完成了HFRC-F高压脉冲电源系统的研制与测试系统的搭建,并开展了高压脉冲电源的实验测试。当偏置、预电离、场反转三条支路的电容分别充电至-12k V、20k V、20k V时,以上三个阶段的振荡频率分别为5kHz、125kHz、50kHz,负载线圈电流峰值分别为-20kA、10kA、38k A,场反转阶段电流上升率约为9.5k A/μs。场反等离子体形成区电源是HFRC-F装置的核心部件,本文完成了HFRC-F形成区高压脉冲电源系统的研制与测试工作,为HFRC-F装置的成功运行奠定了基础。此外,本文中关于低杂散参数高压叠层母排以及悬浮式脉冲触发器的设计工作,也可为同类电源的设计与研制提供参考。
其他文献
正极性长空气间隙放电机理的研究对于理解自然雷电不可或缺。正极性长空气间隙放电中涉及的流注-先导转化机制是研究先导起始和发展的关键问题。在流注-先导转化过程,流注茎的形态特性对于研究先导起始和发展至关重要。直接观测流注茎特性极其困难,导致目前流注茎可视化观测结果缺乏,研究成果主要集中于数值模型。实验结果的不足同时也导致模型中流注茎的相关特性无法论证,限制了对流注-先导转化过程的深入研究。因此,本文从
学位
近年发现,高速行驶的列车在穿越架空输电线路时,会引起输电线路发生一定程度的振颤。长期、频繁的振颤将加剧线路的疲劳损伤,增加线路断线及金具断裂的风险。因此,针对跨高铁输电线路的振颤特性及疲劳损伤进行研究,有利于揭示高速列车对输电线路的作用机理,指导输电线路的规划设计。研究跨高铁输电线路的振颤控制方法与防护措施,对提高电力系统运行安全与可靠性具有现实意义。首先,论文分析了高速列车穿越输电线路对空间电场
学位
风机叶片雷击放电击穿损伤是叶片遭受雷击后最主要的损伤形态。叶片复合材料层的击穿取决于其所承受环境电场和流注放电空间电荷场的共同作用。为了明晰风机叶片复合材料铺层雷击放电的击穿机制和物理过程,解释叶片雷击贯穿型损伤的形成原因,首先需要研究掌握空气—GFRP复合材料层组合间隙的放电击穿机制。本文首先搭建空气—GFRP介质层组合间隙流注放电过程观测平台。开展了组合间隙流注放电特性实验研究,获得了“沿面型
学位
在新一代激光惯性约束聚变和大型磁阱型中子源等实现负载极端物理效应的大科学装置中,电磁参数指标的逐步提升对其中的脉冲大电流气体开关提出了吉瓦-百千安-百微秒的电弧放电要求,其平均电流上升率(di/dt)达到几甚至十几k A/μs。高电流上升率的脉冲电弧放电会诱导产生强烈的冲击波并施加于人造石墨电极,而石墨电极虽然耐电弧烧蚀,但是机械强度较低。电弧冲击波可能直接造成电极的断裂、破碎甚至突然爆裂,大大缩
学位
撕裂模是托卡马克装置中常见的磁流体不稳定性,也是危害最大的不稳定性之一。由于托卡马克真空室壁和误差场的作用,撕裂模可能会停止转动,形成锁模,降低等离子体约束水平并最终导致破裂,给托卡马克装置带来严重损害。由于锁模产生的磁扰动相对于平衡场是个小量,且其不在空间中传播,因此针对撕裂模锁模模数、幅值、相位和空间分布的测量一直是研究磁流体不稳定性的难题,同时锁模测量也是控制锁模,避免破裂的先决条件。针对以
学位
容性设备数量在变电站中占比达40%以上,是电力系统中不可缺少的电力设备,可以通过容性设备在线监测系统对其介损值进行测量进而分析设备绝缘状态。现行监测方法为通过计算末屏接地电流和母线电压之间的相角差进而得到介损值。实际运行中容性设备在线监测装置所采集的末屏接地电流信号微弱,易受周围工频电磁场干扰,导致监测到的介损值不准确、波动大的情况时有发生,若监测不准确则会造成误报,监测结果不能供运维人员参考。因
学位
随着电网网架结构以及接入节点能源属性的复杂程度越来越高,电网中故障电压所含频率成分也更加复杂。实施宽频暂态电压监测对分析电网故障原因、指导绝缘设计具有重要的意义,但是对电压监测装置提出了更高的要求。电容式电压互感器(Capacitor Voltage Transformer,CVT)变电站保有量较高,但是其只能测量工频信号。若CVT暂态传递特性时域补偿方法能提高其对故障电压的感知能力,进而在不对电
学位
场反位形(Field reversed configuration,简称FRC)对于开展聚变新位形研究、聚变堆小型化与经济化探索具有重要意义。要观察等离子体的运动状态,需要各种各样的诊断配合使用来检测其物理状态。其中,磁诊断系统是等离子体装置最基本的诊断系统之一,由于磁场与等离子体密切相关,因此磁场信息可以从侧面反映或者推演等离子体的参数与其运动特性。本文设计了一套覆盖形成区的磁诊断系统,其目的在
学位
托卡马克装置运行中,随着参数的不断提高,等离子体边界区域与装置壁的相互作用不断增强,装置壁热负荷增大。为了缓解装置壁热负荷,进一步提高等离子体运行参数,提高排杂能力,偏滤器位型被广泛的应用在托卡马克装置中。偏滤器位型的引入,使等离子体运行参数进一步提高,有效约束了等离子体边界与装置壁相互作用,提高了对杂质的屏蔽能力,增强了反应杂质的排除能力。偏滤器位型边界等离子输运,不仅影响着等离子体与装置壁的相
学位
有机染料废水由于对环境及人类生活的负面影响日益显著,已得到相当大的关注。基于介质阻挡放电(Dielectric Barrier Discharge,DBD)的低温等离子体技术被证实可以有效处理有机废水。本文针对大气压沿面DBD低温等离子体降解染料废水进行系统研究,设计开发了新型沿面DBD低温等离子体水处理装置,以甲基橙为目标污染物,对自制反应器降解过程的电学特性、降解效率及影响因素进行了研究,探讨
学位