论文部分内容阅读
全光波长转换技术(AWOC)是实现全光通信的关键技术之一。目前,全光波长转换技术都是基于非线性效应产生的,大致包括四类:基于交叉相位调制效应、基于交叉增益调制效应、基于四波混频效应以及差频效应。其中基于四波混频效应的全光波长转换技术目前研究最多。与其他全光波长转换器相比,基于四波混频产生的新波长可以完全复制信号光的振幅、频率、相位等信息,可以实现完全透明波长转换。基于四波混频的波长转换早在十年前就已经提出了,然而其受介质的非线性强度限制,转化效率一直不高。寻找具有高稳定性、高非线性强度的介质成为当务之急。2004年,英国的两位物理学家利用胶带首次剥离出石墨烯,由此打开研究二维材料的大门。二维材料指的是电子仅在两个维度上自由运动的平面材料,如纳米薄膜、超晶格、量子阱。二维材料是一种层状结构,其层与层之间由弱范德瓦尔斯力作用。与一维和三维材料不同,二维材料因其二维结构而具有独特光电性能。目前,二维光电材料主要包括石墨烯(GN)、过渡金属硫系化合物(TMDCs)、拓扑绝缘体(TI)、黑磷(BP)等。最近,我们发现了两种新型二维材料——锑烯(Sb)和MXene。这两种二维材料具有高稳定性、高非线性强度、优异导热性等特性,可以作为非线性器件,应用到全光信号处理中。本论文将利用锑烯和MXene的非线性特性,与微纳光纤结合,实现全光波长转换,主要研究内容如下:1.介绍基于四波混频的全光波长转换器的原理,从原理上阐明Sb和MXene作为波长转换介质的可行性;2.介绍Sb和MXene的制备过程及表征,详细介绍材料的特性。利用扫描电子显微镜等表征材料化学特性,用闭孔Z扫描技术表征非线性特性;3.介绍基于Sb和MXene的波长转换装置以及实验测量。详细介绍波长转换装置的搭建,并通过高速示波器以及光谱仪对转换效果进行测量,分析整个装置的转换性能以及信号处理能力。